Skip to main content Accessibility help
×
Home

Lifetime productivity of dairy cows in smallholder farming systems of the Central highlands of Kenya

  • M. C. Rufino (a1), M. Herrero (a2), M. T. Van Wijk (a1), L. Hemerik (a3), N. De Ridder (a1) and K. E. Giller (a1)...

Abstract

Evaluation of lifetime productivity is sensible to target interventions for improving productivity of smallholder dairy systems in the highlands of East Africa, because cows are normally not disposed of based on productive reasons. Feeding strategies and involuntary culling may have long-term effects on productive (and therefore economic) performance of dairy systems. Because of the temporal scale needed to evaluate lifetime productivity, experimentation with feedstuffs in single lactations is not enough to assess improvements in productivity. A dynamic modelling approach was used to explore the effect of feeding strategies on the lifetime productivity of dairy cattle. We used LIVSIM (LIVestock SIMulator), an individual-based, dynamic model in which performance depends on genetic potential of the breed and feeding. We tested the model for the highlands of Central Kenya, and simulated individual animals throughout their lifetime using scenarios with different diets based on common feedstuffs used in these systems (Napier grass, maize stover and dairy concentrates), with and without imposing random mortality on different age classes. The simulations showed that it is possible to maximise lifetime productivity by supplementing concentrates to meet the nutrient requirements of cattle during lactation, and during early development to reduce age at first calving and extend productive life. Avoiding undernutrition during the dry period by supplementing the diet with 0.5 kg of concentrates per day helped to increase productivity and productive life, but in practice farmers may not perceive the immediate economic benefits because the results of this practice are manifested through a cumulative, long-term effect. Survival analyses indicated that unsupplemented diets prolong calving intervals and therefore, reduce lifetime productivity. The simulations with imposed random mortality showed a reduction of 43% to 65% in all productivity indicators. Milk production may be increased on average by 1400 kg per lactation by supplementing the diet with 5 kg of concentrates during early lactation and 1 kg during late lactation, although the optimal supplementation may change according to milk and concentrate prices. Reducing involuntary culling must be included as a key goal when designing interventions to improve productivity and sustainability of smallholder dairy systems, because increasing lifetime productivity may have a larger impact on smallholders’ income than interventions targeted to only improving daily milk yields through feeding strategies.

Copyright

Corresponding author

References

Hide All
Abate, A, Abate, AN 1991. Wet season nutrient supply to lactating grade animals managed under different production systems. East African Agriculture and Forestry Journal 57, 3339.
Abate, A, Dzowela, BH, Kategile, JA 1993. Intensive animal feeding practices for optimum feed utilisation. In Proceedings of a workshop on Future of livestock industries in East and Southern Africa (ed. JA Kategile and S Mubi), p. 227. ILCA, Addis Ababa, Ethiopia.
Adeyene, JA, Adebanjo, AK 1978. Lactational characteristics of imported British Friesian cows raised in Western Nigeria. Journal of Agricultural Science 91, 645651.
Agricultural and Food Research Council (AFRC) 1993. Energy and protein requirements of ruminants. An advisory manual prepared by the AFRC Technical Committee on response to nutrients. CAB International, Wallingford, UK.
Agyemang, K, Nkhonjera, LP 1990. Productivity of crossbred cattle on smallholder farms in Southern Malawi. Tropical Animal Health and Production 22, 916.
Bagley, CP 1993. Nutritional management of replacement beef heifers: a review. Journal of Animal Science 71, 31553163.
Bebe, BO 2008. Dairy heifer rearing under increasing intensification of smallholder dairy systems in the Kenya highlands. Livestock Research for Rural Development 20Article # 22.
Bebe, BO, Udo, HMJ, Rowlands, GJ, Thorpe, W 2003a. Smallholder dairy systems in the Kenya highlands: breed preferences and breeding practices. Livestock Production Science 82, 117127.
Bebe, BO, Udo, HMJ, Rowlands, GJ, Thorpe, W 2003b. Smallholder dairy systems in the Kenya highlands: cattle population dynamics under increasing intensification. Livestock Production Science 82, 211221.
Bebe, BO, Udo, HMJ, Thorpe, W 2008. Characteristics of feeding and breeding practices for intensification of smallholder dairy systems in the Kenya highlands. Livestock Research for Rural Development 20Article # 23.
Conrad, HR 1966. Symposium on factors influencing voluntary intake of herbage by ruminants: physiological and physical factors limiting feed Intake. Journal of Animal Science 25, 227243.
De Jong, R 1996. Dairy stock development and milk production with smallholders. PhD, Wageningen University.
Dijkhuizen, AA, Stelwagen, J, Renkema, JA 1986. A stochastic-model for the simulation of management decisions in dairy herds, with special reference to production, reproduction, culling and income. Preventive Veterinary Medicine 4, 273289.
Gitau, GK, McDermott, JJ, Waltnertoews, D, Lissemore, KD, Osumo, JM, Muriuki, D 1994. Factors influencing calf morbidity and mortality in smallholder dairy farms in Kiambu district of Kenya. Preventive Veterinary Medicine 21, 167177.
Haccou, P, Hemerik, L 1985. The Influence of larval dispersal in the cinnabar moth (Tyria jacobaeae) on predation by the red wood ant (Formica polyctena): an analysis based on the proportional hazards model. Journal of Animal Ecology 54, 755769.
Jenet, A, Fernandez-Rivera, S, Tegegne, A, Yimegnuhal, A, Osuji, PO, Kreuzer, M 2004a. Growth and feed conversion of Boran (Bos indicus) and Holstein × Boran heifers during three physiological states receiving different levels of a tropical diet. Livestock Production Science 89, 159173.
Jenet, A, Yimegnuhal, A, Fernandez-Rivera, S, Tegegne, A, Osuji, PO, McCrabb, G, Kreuzer, M 2004b. Long-term response to feeding level in lactational performance of Boran (Bos indicus) and Boran × Holstein cows. Animal Science 78, 331343.
Kabuga, JD, Agyemang, K 1984. Performance of Canadian Holstein-Friesian cattle in the humid forest zone of Ghana. II. Preweaning performance. Tropical Animal Health and Production 16, 174180.
Kahi, AK, Thorpe, W, Nitter, G, Van Arendonk, JAM, Gall, CF 2000. Economic evaluation of crossbreeding for dairy production in a pasture based production system in Kenya. Livestock Production Science 65, 167184.
Kaitho, RJ, Biwott, J, Tanner, JC, Gachuiri, CK, Wahome, RG 2001. Effect of allocation of fixed amounts of concentrates on milk yields and fertility of dairy cows. Retrieved June 20, 2006, from http://wwwfaoorg/DOCREP/ARTICLE/AGRIPPA/X9500E09HTM (Agrippa FAO Peer reviewed journal).
Kebreab, E, Smith, T, Tanner, JC, Osuji, PO 2005. Review of undernutrition in smallholder ruminant production systems in the tropics. In Coping with feed scarcity in smallholder livestock systems in developing countries (ed. AA Ayantunde, S Fernandez-Rivera and G McCrabb), pp. 3–94. Animal Sciences Group, Wageningen UR, Wageningen, The Netherlands; University of Reading, Reading, UK; ETH (Swiss Federal Institute of Technology), Zurich, Switzerland; and ILRI (International Livestock Research Institute), Nairobi, Kenya.
King, JM, Parsons, DJ, Turnpenny, JR, Nyangaga, J, Bakari, P, Wathes, CM 2006. Modelling energy metabolism of Friesians in Kenya smallholdings shows how heat stress and energy deficit constrain milk yield and cow replacement rate. Animal Science 82, 705716.
Kleinbaum, DG, Klein, M 2005. Survival analysis: a self-learning text. Springer Science, Business Media, Inc., New York, USA.
Knudsen, PB, Sohael, AS 1970. Vom Herd: a study of performance of a mixed Friesian/Zebu herd in a tropical environment. Tropical Agriculture 47, 189203.
Konandreas, PA, Anderson, FM 1982. Cattle herd dynamics: an integer and stochastic model for evaluating production alternatives ILCA Research report 2, ILCA Publications, Addis Ababa, Ethiopia.
Lanyasunya, TR, de Jong, R, Nyakira, BS, Mukisira, EA 2000. Impact of appropriate technologies on calf and heifer performance on-farm in Bahati Division, Nakuru District. In Testing of livestock technologies on smallholder mixed farms in Kenya (eds. R de Jong and EA Mukisira), p. 210. Signal press Ltd, Kenya Agricultural Research Institute and Royal Tropical Institute, Nairobi, Kenya and Amsterdam, The Netherlands.
Masama, E, Kusina, NT, Sibanda, S, Majoni, C 2003. Reproduction and lactational performance of cattle in a smallholder dairy system in Zimbabwe. Tropical Animal Health and Production 35, 117129.
Methu, JN, Owen, E, Abate, AL, Tanner, JC 2001. Botanical and nutritional composition of maize stover, intakes and feed selection by dairy cattle. Livestock Production Science 71, 8796.
Ministry of Agriculture Fisheries and Food (MAFF) 1987. Energy allowances and feeding systems for ruminants. ADAS Reference Book 433, 2nd edition. Her Majesty’s Stationery Office, London, UK.
Muia, JMK 2000. Use of Napier grass to improve smallholder milk production in Kenya. Phd, Wageningen University.
Mukasa-Mugerwa, E 1989. A review of reproductive performance of female Bos indicus (Zebu) cattle. ILCA, Addis Ababa, Ethiopia.
Ngategize, PK 1989. Economic evaluation of improved management for Zebu cattle in Northern Tanzania. Agricultural Systems 31, 305314.
Ojango, JMK, Ducrocq, V, Pollott, GE 2005. Survival analysis of factors affecting culling early in the productive life of Holstein-Friesian cattle in Kenya. Livestock Production Science 92, 317322.
Ongadi, PM, Wakhungu, JW, Wahome, RG, Okitoi, LO 2007. Characterization of grade dairy cattle owning households in mixed small scale farming systems of Vihiga, Kenya. Livestock Research for Rural Development 19Article #43.
Osuji, PO, Saarisalo, EM, Tegegne, A, Umunna, NN 2005. Undernutrition of dairy cattle in smallholder production systems in East Africa. In Coping with feed scarcity in smallholder livestock systems in developing countries (ed. AA Ayantunde, S Fernandez-Rivera and G McCrabb), pp. 97–120. Animal Sciences Group, Wageningen UR, Wageningen, The Netherlands; University of Reading, Reading, UK; ETH (Swiss Federal Institute of Technology), Zurich, Switzerland; and ILRI (International Livestock Research Institute), Nairobi, Kenya.
Perry, BD, Randolph, TF, McDermott, JJ, Sones, KR, Thornton, PK 2002. Investing in animal health research to alleviate poverty. International Livestock Research Institute (ILRI), Nairobi, Kenya Available at http://www.ilri.org/Infoserv/webpub/Fulldocs/InvestAnim/index.htm
Powell, JM, Williams, TO 1993. Livestock, nutrient cycling and sustainable agriculture in the West African Sahel. International Institute for Environment and Development, London, UK.
Romney, DL, Thorne, P, Lukuyu, B, Thornton, PK 2003. Maize as food and feed in intensive smallholder systems: management options for improved integration in mixed farming systems of east and southern Africa. Field Crops Research 84, 159168.
Romney, D, Utiger, C, Kaitho, R, Thorne, P, Wokabi, A, Njoroge, L, Chege, L, Kirui, J, Kamotho, D, Staal, S 2004. Effect of intensification on feed management of dairy cows in the Central Highlands of Kenya. In Responding to the livestock revolution: the role of globalization and implications for poverty alleviation (ed. E Owen, T Smith, MA Steele, S Anderson, AJ Duncan, M Herrero, JD Leaver, CK Reynolds, JI Richards and JC Ku-Vera), pp. 167178. British Society of Animal Science Publication 33, Nottingham University Press, Nottingham, UK.
Rufino, MC, Herrero, M, Van Wijk, MT, Dury, J, De Ridder, N, Giller, KE 2008. NUANCES – LIVSIM: The Livestock Simulator, version 08.08. Plant Production Systems Group, Wageningen University, Wageningen, The Netherlands Available at http://www.africanuances.nl
Staal, S, Owango, M, Muriuki, H, Kenyanjui, M, Lukuyu, B, Njoroge, L, Njubi, D, Baltenweck, I, Musembi, F, Bwana, O, Muriuki, K, Gichungu, G, Omore, A, Thorpe, W 2001. Dairy systems characterisation of the greater Nairobi milk shed. MoARD, KARI, ILRI, DFID, Nairobi, Kenya, p. 73.
Tolkamp, BJ, Ketelaars, JJMH 1994. Efficiency of energy utilisation in cattle given food ad libitum: predictions according to the ARC system and practical consequences. Animal Production 59, 4347.
Trail, JCM, Marples, HJS 1968. Friesian cattle in Uganda. Tropical Agriculture 45, 173178.
Van Arendonk, JAM 1985. A model to estimate the performance, revenues and costs of dairy cows under different production and price situations. Agricultural Systems 16, 157189.
Van de Ven, GWJ, De Ridder, N, Van Keulen, H, Van Ittersum, MK 2003. Concepts in production ecology for analysis and design of animal and plant–animal production systems. Agricultural Systems 76, 507525.
Van Schaik, G, Perry, BD, Mukhebi, AW, Gitau, GK, Dijkhuizen, AA 1996. An economic study of smallholder dairy farms in Murang’a district, Kenya. Preventive Veterinary Medicine 29, 2136.
Vargas, B, Herrero, M, Van Arendonk, JAM 2001. Interactions between optimal replacement policies and feeding strategies in dairy herds. Livestock Production Science 69, 1731.

Keywords

Lifetime productivity of dairy cows in smallholder farming systems of the Central highlands of Kenya

  • M. C. Rufino (a1), M. Herrero (a2), M. T. Van Wijk (a1), L. Hemerik (a3), N. De Ridder (a1) and K. E. Giller (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed