Skip to main content
×
Home
    • Aa
    • Aa

Strict coupling between the development of Planktothrix rubescens and microcystin content in two nearby lakes south of the Alps (lakes Garda and Ledro)

  • Nico Salmaso (a1), Adriano Boscaini (a1), Shiva Shams (a1) (a2) and Leonardo Cerasino (a1)
Abstract

Cyanobacteria and their principal cyanotoxins were studied in the largest Italian lake (Lake Garda, 65 m a.s.l.) and in a near smaller reservoir (Lake Ledro, 652 m a.s.l.). The two lakes share a fraction of water due to a pipe pumping water from and into the lakes and the same dominant cyanobacterial species (Planktothrix rubescens). Despite the differences in the concentrations of cyanotoxins (mostly microcystins, MCs) and biovolumes of P. rubescens (BVPr) (over one order of magnitude), the Bayesian analyses linking these two variables showed striking similarities, suggesting the existence of similar toxic genotypes colonizing the two water bodies and a constitutive MC production. It was stressed that a greater sensitivity and reliability in the management strategies aimed at minimizing the risks due to cyanobacteria should also contemplate the use of specific lake-tailored models linking MCs and BVPr.

Cyanobacteria and their principal cyanotoxins were studied in the largest Italian lake (Lake Garda, 65 m a.s.l.) and in a near smaller reservoir (Lake Ledro, 652 m a.s.l.). The two lakes share a fraction of water due to a pipe pumping water from and into the lakes and the same dominant cyanobacterial species (Planktothrix rubescens). Despite the differences in the concentrations of cyanotoxins (mostly microcystins, MCs) and biovolumes of P. rubescens (BVPr) (over one order of magnitude), the Bayesian analyses linking these two variables showed striking similarities, suggesting the existence of similar toxic genotypes colonizing the two water bodies and a constitutive MC production. It was stressed that a greater sensitivity and reliability in the management strategies aimed at minimizing the risks due to cyanobacteria should also contemplate the use of specific lake-tailored models linking MCs and BVPr.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Strict coupling between the development of Planktothrix rubescens and microcystin content in two nearby lakes south of the Alps (lakes Garda and Ledro)
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Strict coupling between the development of Planktothrix rubescens and microcystin content in two nearby lakes south of the Alps (lakes Garda and Ledro)
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Strict coupling between the development of Planktothrix rubescens and microcystin content in two nearby lakes south of the Alps (lakes Garda and Ledro)
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: nico.salmaso@fmach.it
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

R. Akcaalan , F.M. Young , J.S. Metcalf , L.F. Morrison , M. Albay and G.A. Codd , 2006. Microcystin analysis in single filaments of Planktothrix spp. in laboratory cultures and environmental blooms. Water Res., 40, 15831590.

O. Anneville , S. Gammeter and D. Straile , 2005. Phosphorus decrease and climate variability: mediators of synchrony in phytoplankton changes among European peri-alpine lakes. Freshw. Biol., 50, 17311746.

S. Bogialli , F. Nigro Di Gregorio , L. Lucentini , E. Ferretti , M. Ottaviani , N. Ungaro , P.P. Abis and M. Cannarozzi De Grazia , 2013. Management of a toxic cyanobacterium bloom (Planktothrix rubescens) affecting an Italian drinking water basin: a case study. Environ. Sci. Technol., 47, 574583.

F. Buzzi , 2002. Phytoplankton assemblages in two sub-basins of Lake Como. J. Limnol., 61, 117128.

E. Carraro , N. Guyennon , D. Hamilton , L. Valsecchi , E.C. Manfredi , G. Viviano , F. Salerno , G. Tartari and D. Copetti , 2012. Coupling high-resolution measurements to a three-dimensional lake model to assess the spatial and temporal dynamics of the cyanobacterium Planktothrix rubescens in a medium-sized lake. Hydrobiologia, 698, 7795.

L. Cerasino and N. Salmaso , 2012. Diversity and distribution of cyanobacterial toxins in the Italian subalpine lacustrine district. Oceanol. Hydrobiol. St., 41, 5463.

D. D'alelio , A. Gandolfi , A. Boscaini , G. Flaim , M. Tolotti and N. Salmaso , 2011. Planktothrix populations in subalpine lakes: selection for strains with strong gas vesicles as a function of lake depth, morphometry and circulation. Freshwat. Biol., 56, 14811493.

A. de los Ríos , C. Ascaso , J. Wierzchos , E. Fernández-Valiente and A. Quesada , 2004. Microstructural characterization of cyanobacterial mats from the McMurdo Ice Shelf, Antarctica. Appl. Environ. Microbiol., 70, 569580.

D. Dietrich and S. Hoeger , 2005. Guidance values for microcystins in water and cyanobacterial supplement products (blue-green algal supplements): a reasonable or misguided approach? Toxicol. Appl. Pharm., 203, 273289.

M.T. Dokulil and K. Teubner , 2012. Deep living Planktothrix rubescens modulated by environmental constraints and climate forcing. Hydrobiologia, 698, 2946.

A.M. Ellison , 2004. Bayesian inference in ecology. Ecol. Lett., 7, 509520.

L.E. Fleming , C. Rivero , J. Burns , C. William , J.A. Bean , K.A. Shea and J. Stinn , 2002. Blue green algae (cyanobacterial) toxins, surface drinking water, and liver cancer in Florida. Harmful Algae, 1, 57168.

N. Gallina , O. Anneville and M. Beniston , 2011. Impacts of extreme air temperatures on cyanobacteria in five deep peri-Alpine lakes. J. Limnol., 70, 186196.

N. Gallina , N. Salmaso , G. Morabito and M. Beniston , 2013. Phytoplankton configuration in six deep lakes in the peri-Alpine region: are the key drivers related to eutrophication and climate? Aquat. Ecol., 47, 177193.

N.T. Hobbs and R. Hilborn , 2006. Alternatives to statistical hypothesis testing in ecology: a guide to self teaching. Ecol. Appl., 16, 519.

J.F. Humbert , C. Quiblier and M. Gugger , 2010. Molecular approaches for monitoring potentially toxic marine and freshwater phytoplankton species. Anal. Bioanal. Chem., 397, 17231732.

A.R. Humpage , 2008. Toxin types, toxicokinetics and toxicodynamics. Adv. Exp. Med. Biol., 619, 383415.

S. Jacquet , J.-F. Briand , C. Leboulanger , C. Avois-Jacquet , L. Oberhaus , B. Tassin , B. Vinçon-Leite , G. Paolini , J.-C. Druart , O. Anneville and J.-F. Humbert , 2005. The proliferation of the toxic cyanobacterium Planktothrix rubescens following restoration of the largest natural French lake (Lac du Bourget). Harmful Algae, 4, 651672.

R.E. Kass and A.E. Raftery , 1995. Bayes Factors. J. Am. Stat. Assoc., 90, 773795.

J. Kristiansen , 1996. Dispersal of freshwater algae – a review. Hydrobiologia, 336, 151157.

R. Kurmayer and M. Gumperberger , 2006. Diversity of microcystin genotypes among populations of the filamentous cyanobacteria Planktothrix rubescens and Planktothrix agardhii. Mol. Ecol., 15, 38493861.

R. Kurmayer , E. Schober , L. Tonk , P.M. Visser and G. Christiansen , 2011. Spatial divergence in the proportions of genes encoding toxic peptide synthesis among populations of the cyanobacterium Planktothrix in European lakes. FEMS Microbiol. Lett., 317, 12737.

D.J. Lunn , A. Thomas , N. Best and D. Spiegelhalter , 2000. WinBUGS – a Bayesian modelling framework: concepts, structure, and extensibility. Stat. Comput., 10, 325337.

S. Lyck , 2004. Simultaneous changes in cell quotas of microcystin, chlorophyll a, protein and carbohydrate during different growth phases of a batch culture experiment with Microcystis aeruginosa. J. Plankton. Res., 26, 727736.

A.D. Martin , K.M. Quinn and J.H. Park , 2011. MCMCpack: Markov Chain Monte Carlo in R. J. Stat. Soft., 42, 121.

M.A. McCarthy and P. Masters , 2005. Profiting from prior information in Bayesian analyses of ecological data. J. Appl. Ecol., 42, 10121019.

V. Messineo , D. Mattei , S. Melchiorre , G. Salvatorea , S. Bogialli , R. Salzano , R. Mazza , G. Capelli and M. Bruno , 2006. Microcystin diversity in a Planktothrix rubescens population from Lake Albano (Central Italy). Toxicon, 48, 160174.

J.S. Metcalf and G.A. Codd , 2012. Cyanotoxins. In: B.A. Whitton (ed.), Ecology of Cyanobacteria II, Springer, Dordrecht, 651675.

G. Morabito , D. Ruggiu and P. Panzani , 2002. Recent dynamics (1995–1999) of the phytoplankton assemblages in Lago Maggiore as a basic tool for defining association patterns in the Italian deep lakes. J. Limnol., 61, 129145.

L. Naselli-Flores and R. Barone , 2000. Phytoplankton dynamics and structure: a comparative analysis in natural and man-made water bodies of different trophic state. Hydrobiologia, 438, 6574.

L. Naselli-Flores , R. Barone , I. Chorus and R. Kurmayer , 2007. Toxic cyanobacterial blooms in reservoirs under a semiarid mediterranean climate: the magnification of a problem. Environ. Toxicol., 22, 399404.

B.A. Neilan , L.A. Pearson , J. Muenchhoff , M.C. Moffitt and E. Dittmann , 2012. Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environ. Microbiol., 15, 12391253.

G.K. Nürnberg , B.D. LaZerte and D.D. Olding , 2003. An artificially induced Planktothrix rubescens surface bloom in a small kettle lake in Southern Ontario compared to blooms world-wide. Lake Reserv. Manag., 19, 307322.

W. Okello , V. Ostermaier , C. Portmann , K. Gademann and R. Kurmayer , 2010. Spatial isolation favours the divergence in microcystin net production by Microcystis in Ugandan freshwater lakes. Water Res., 44, 28032814.

H. Paerl , 2008. Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater-marine continuum. In: H.K. Hudnell (ed.), Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs, Springer, New York, 217237.

S. Paulino , E. Valério , N. Faria , J. Fastner , M. Welker , R. Tenreiro and P. Pereira , 2009. Detection of Planktothrix rubescens (Cyanobacteria) associated with microcystin production in a freshwater reservoir. Hydrobiologia, 621, 207211.

A. Peretyatko , S. Teissier , S. De Backer and L. Triest , 2010. Assessment of the risk of cyanobacterial bloom occurrence in urban ponds: probabilistic approach. Ann. Limnol. - Int. J. Lim., 46, 121133.

E. Rott , N. Salmaso and E. Hoehn , 2007. Quality control of Utermöhl based phytoplankton biovolume estimates – an easy task or a Gordian knot? Hydrobiologia, 578, 141146.

N. Salmaso , 2002. Ecological patterns of phytoplankton assemblages in Lake Garda: seasonal, spatial and historical features. J. Limnol., 61, 95115.

N. Salmaso , 2011. Interactions between nutrient availability and climatic fluctuations as determinants of the long term phytoplankton community changes in Lake Garda, Northern Italy. Hydrobiologia, 660, 5968.

N. Salmaso , F. Buzzi , L. Garibaldi , G. Morabito and M. Simona , 2012a. Effects of nutrient availability and temperature on phytoplankton development: a case study from large lakes south of the Alps. Aquat. Sci., 74, 555570.

N. Salmaso , L. Naselli-Flores and J. Padisák , 2012b. Impairing the largest and most productive forest on our planet: how do human activities impact phytoplankton? Hydrobiologia, 698, 375384.

B. Sedmak , T. Eleršek , O. Grach-Pogrebinsky , S. Carmeli , N. Sever and T.T. Lah , 2008. Ecotoxicologically relevant cyclic peptides from cyanobacterial bloom (Planktothrix rubescens) – a threat to human and environmental health. Radiol. Oncol., 42, 102113.

S. Sturtz , U. Ligges and A. Gelman , 2005. R2WinBUGS: a package for running WinBUGS from R. J. Stat. Softw., 12, 116.

Z. Svircev , S. Krstic , M. Miladinov-Milkov , V. Baltic and M. Vldovic , 2009. Freshwater cyanobacterial blooms and primary liver cancer epidemiological studies in Serbia. J. Environ. Sci. Heal. C, 27, 3655.

Y. Ueno , S. Nagata , T. Tsutsumi , A. Hasegawa , M.F. Watanabe , H.D. Park , G.C. Chen , G. Chen and S.Z. Yu , 1996. Detection of microcystins, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay. Carcinogenesis, 17, 13171321.

E. Valério , N. Faria , S. Paulino and P. Pereira , 2008. Seasonal variation of phytoplankton and cyanobacteria composition and associated microcystins in six Portuguese freshwater reservoirs. Ann. Limnol. - Int. J. Lim., 44, 189196.

A.E. Walsby and F. Schanz , 2002. Light-dependent growth rate determines changes in the population of Planktothrix rubescens over the annual cycle in Lake Zürich, Switzerland. New Phytol., 154, 671687.

C. Yéprémian , M.F. Gugger , E. Briand , A. Catherine , C. Berger , C. Quiblier and C. Bernard , 2007. Microcystin ecotypes in a perennial Planktothrix agardhii bloom. Water Res., 41, 44464456.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annales de Limnologie - International Journal of Limnology
  • ISSN: 0003-4088
  • EISSN: 2100-000X
  • URL: /core/journals/annales-de-limnologie-international-journal-of-limnology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 30 *
Loading metrics...

Abstract views

Total abstract views: 31 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th July 2017. This data will be updated every 24 hours.