Skip to main content

Climate and surface mass balance of coastal West Antarctica resolved by regional climate modelling

  • Jan T. M. Lenaerts (a1) (a2), Stefan R. M. Ligtenberg (a2), Brooke Medley (a3), Willem Jan Van de Berg (a2), Hannes Konrad (a4), Julien P. Nicolas (a5), J. Melchior Van Wessem (a2), Luke D. Trusel (a6), Robert Mulvaney (a7), Rebecca J. Tuckwell (a7), Anna E. Hogg (a4) and Elizabeth R. Thomas (a7)...

West Antarctic climate and surface mass balance (SMB) records are sparse. To fill this gap, regional atmospheric climate modelling is useful, providing that such models are employed at sufficiently high horizontal resolution and coupled with a snow model. Here we present the results of a high-resolution (5.5 km) regional atmospheric climate model (RACMO2) simulation of coastal West Antarctica for the period 1979–2015. We evaluate the results with available in situ weather observations, remote-sensing estimates of surface melt, and SMB estimates derived from radar and firn cores. Moreover, results are compared with those from a lower-resolution version, to assess the added value of the resolution. The high-resolution model resolves small-scale climate variability invoked by topography, such as the relatively warm conditions over ice-shelf grounding zones, and local wind speed accelerations. Surface melt and SMB are well reproduced by RACMO2. This dataset will prove useful for picking ice core locations, converting elevation changes to mass changes, for driving ocean, ice-sheet and coupled models, and for attributing changes in the West Antarctic Ice Sheet and shelves to changes in atmospheric forcing.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Climate and surface mass balance of coastal West Antarctica resolved by regional climate modelling
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Climate and surface mass balance of coastal West Antarctica resolved by regional climate modelling
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Climate and surface mass balance of coastal West Antarctica resolved by regional climate modelling
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Hide All
Armstrong, R, Knowles, K, Brodzik, MJ and Hardman, MA (1994) DMSP SSM/I-SSMIS Pathfinder Daily EASE-Grid Brightness Temperatures, Version 2, NASA National Snow and Ice Data Center Distributed Active Archive Center. [online] Available from: (Accessed 10 March 2017).
Bamber, JL, Gomez-Dans, JL and Griggs, JA (2009) A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data - part 1: data and methods. Cryosphere, 3(1), 101111 (doi: 10.5194/tc-3-101-2009)
Bertler, NAN, Naish, TR, Mayewski, PA and Barrett, PJ (2006) Opposing oceanic and atmospheric ENSO influences on the Ross Sea Region, Antarctica. Adv. Geosci., 6, 8386 (doi: 10.5194/adgeo-6-83-2006)
Bracegirdle, TJ and Marshall, GJ (2012) The reliability of antarctic tropospheric pressure and temperature in the latest global reanalyses. J. Clim., 25(20), 71387146 (doi: 10.1175/JCLI-D-11-00685.1)
Bromwich, DH, Monaghan, AJ and Guo, Z (2004) Modeling the ENSO modulation of Antarctic climate in the late 1990s with the Polar MM5. J. Clim., 17(1), 109132 (doi: 10.1175/1520-0442(2004)017¡0109:MTEMOA¿2.0.CO;2)
Clem, KR and Renwick, JA (2015) Austral spring Southern hemisphere circulation and temperature changes and links to the SPCZ. J. Clim., 28(18), 73717384 (doi: 10.1175/JCLI-D-15-0125.1)
Connolley, WM (1997) Variability in annual mean circulation in southern high latitudes. Clim. Dyn., 13(10), 745756 (doi: 10.1007/s003820050195)
DeConto, RM and Pollard, D (2016) Contribution of Antarctica to past and future sea-level rise. Nature, 531(7596), 591597 (doi: 10.1038/nature17145)
Dee, DP and 35 others (2011) The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc., 137(656), 553597 (doi: 10.1002/qj.828)
Depoorter, MA and 6 others (2013) Calving fluxes and basal melt rates of Antarctic ice shelves.. Nature, 502(7469), 8992 (doi: 10.1038/nature12567)
Déry, SJ and Yau, MK (1999) A bulk blowing snow model. Bound.-Layer Meteorol., 93(2), 237251
Ding, Q, Steig, EJ, Battisti, DS and Kuttel, M (2011) Winter warming in West Antarctica caused by central tropical Pacific warming. Nat. Geosci, 4(6), 398403
Doyle, JD and Shapiro, MA (1999) Flow response to large-scale topography: the Greenland tip jet. Tellus A Dyn. Meteorol. Oceanogr., 51(5), 728748 (doi: 10.3402/tellusa.v51i5.14471)
ECMWF-IFS (2008) Part IV: physical processes (CY33R1). Technical Report. European Centre for Medium-Range Weather Forecasts (ECMWF)
Ettema, J, van den Broeke, MR, van Meijgaard, E and van de Berg, WJ (2010) Climate of the Greenland ice sheet using a high-resolution climate model - Part 1: Evaluation. Cryosphere, 4(2), 511527. (doi: 10.5194/tc-4-511-2010)
Fretwell, P and 59 others (2013) Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere, 7(1), 375393. (doi: 10.5194/tc-7-375-2013)
Fyke, J, Lenaerts, J and Wang, H (2017) Countervailing regional snowfall patterns dampen Antarctic mass variability. Cryosph. Discuss., 124 (doi: 10.5194/tc-2017-102)
Gorodetskaya, IV and 5 others (2014) The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophys. Res. Lett., 41(17), 61996206 (doi: 10.1002/2014GL060881)
Hogg, AE and 11 others (2017) Increased ice flow in Western Palmer Land linked to ocean melting. Geophys. Res. Lett., 44(9), 41594167 (doi: 10.1002/2016GL072110)
Hubbard, B and 12 others (2016) Massive subsurface ice formed by refreezing of ice-shelf melt ponds. Nat. Commun., 7, 11897 (doi: 10.1038/ncomms11897)
Jacobs, SS and 6 others (2012) The Amundsen Sea and the Antarctic ice sheet. Ocenaography, 25(3), 154163 (doi: 10.5670/oceanog.2012.90)
Jones, RW and 5 others (2016) Evaluation of four global reanalysis products using in situ observations in the Amundsen Sea Embayment, Antarctica. J. Geophys. Res. Atmos., 121(11), 62406257 (doi: 10.1002/2015JD024680)
Joughin, I, Smith, BE and Medley, B (2014) Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science, 344(6185), 735738
King, JC (1998) Using satellite thermal infrared imagery to study boundary layer structure in an Antarctic katabatic wind region. Int. J. Remote Sens., 19(17), 33353348 (doi: 10.1080/014311698214028)
Knowles, K, Njoku, EG, Armstrong, R and Brodzik, MJ (2000) Nimbus-7 SMMR Pathfinder Daily EASE-Grid Brightness Temperatures, Version 1, NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado, USA. [online] Available from: (Accessed 10 March 2017).
Konrad, H and 6 others (2017) Uneven onset and pace of ice-dynamical imbalance in the Amundsen Sea Embayment, West Antarctica. Geophys. Res. Lett., 44(2), 910918 (doi: 10.1002/2016GL070733)
Kovacs, A, Gow, AJ and Morey, RM (1995) The in-situ dielectric constant of polar firn revisited. Cold Reg. Sci. Technol., 23(3), 245256 (doi: 10.1016/0165-232X(94)00016-Q)
Krabill, WB (2010) IceBridge ATM L2 Icessn Elevation, Slope, and Roughness. Version 2 (doi: 10.5067/CPRXXK3F39RV)
Kuipers Munneke, P and 5 others (2011) A new albedo parameterization for use in climate models over the Antarctic ice sheet? J. Geophys. Res. Atmos., 116(5) (doi: 10.1029/2010JD015113)
Kuipers Munneke, P, Van Den Broeke, MR, King, JC, Gray, T and Reijmer, CH (2012) Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula? Cryosphere, 6(2), 353363 (doi: 10.5194/tc-6-353-2012)
Kuipers Munneke, P, Ligtenberg, SRM, Van Den Broeke, MR and Vaughan, DG (2014) Firn air depletion as a precursor of Antarctic ice-shelf collapse? J. Glaciol., 60(220), 205214 (doi: 10.3189/2014JoG13J183)
Lenaerts, JT, Van Tricht, K, Lhermitte, S and L'Ecuyer, TS (2017a) Polar clouds and radiation in satellite observations, reanalyses, and climate models. Geophys. Res. Lett., 44(7) (doi: 10.1002/2016GL072242)
Lenaerts, JTM and Van Den Broeke, MR (2012) Modeling drifting snow in Antarctica with a regional climate model: 2. Results. J. Geophys. Res. Atmos., 117(5) (doi: 10.1029/2010JD015419)
Lenaerts, JTM, van den Broeke, MR, van Angelen, JH, van Meijgaard, E and Déry, SJ (2012a) Drifting snow climate of the Greenland ice sheet: a study with a regional climate model. Cryosphere, 6(4), 891899 (doi: 10.5194/tc-6-891-2012)
Lenaerts, JTM, van den Broeke, MR, van de Berg, WJ, Van Meijgaard, E and Kuipers Munneke, P (2012b) A new, high-resolution surface mass balance map of Antarctica (1979-2010) based on regional atmospheric climate modeling. Geophys. Res. Lett., 39(L04501) (doi: 10.1029/2011GL050713)
Lenaerts, JTM and 11 others (2014a) High variability of climate and surface mass balance induced by Antarctic ice rises. J. Glaciol., 60(224), 11011110 (doi: 10.3189/2014JoG14J040)
Lenaerts, JTM and 6 others (2014b) Drifting snow measurements on the Greenland Ice Sheet and their application for model evaluation. Cryosphere, 8(2), 801814, ISSN (doi: 10.5194/tc-8-801-2014)
Lenaerts, JTM and 12 others (2017b) Meltwater produced by wind-albedo interaction stored in an East Antarctic ice shelf. Nat. Clim. Chang., 7(1), 5862
Leuschen, C (2014) updated 2017. IceBridge Snow Radar L1B Geolocated Radar Echo Strength Profiles, Version 2. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: 10.5067/FAZTWP500V70.
Ligtenberg, SRM, Helsen, MM and van den Broeke, MR (2011) An improved semi-empirical model for the densification of Antarctic firn. Cryosphere, 5(4), 809819. (doi: 10.5194/tc-5-809-2011)
Liu, H, Wang, L and Jezek, KC (2006) Spatiotemporal variations of snowmelt in Antarctica derived from satellite scanning multichannel microwave radiometer and Special Sensor Microwave Imager data (1978–2004). J. Geophys. Res., 111(F1), F01003 (doi: 10.1029/2005JF000318)
Luckman, A and 6 others (2014) Surface melt and ponding on Larsen C Ice Shelf and the impact of föhn winds. Antarct. Sci., 26(Special Issue 06), 625635 (doi: 10.1017/S0954102014000339)
Medley, B and 12 others (2013) Airborne-radar and ice-core observations of annual snow accumulation over Thwaites Glacier, West Antarctica confirm the spatiotemporal variability of global and regional atmospheric models. Geophys. Res. Lett., 40(14), 36493654 (doi: 10.1002/grl.50706)
Medley, B and 14 others (2014) Constraining the recent mass balance of pine island and thwaites glaciers, west antarctica, with airborne observations of snow accumulation. Cryosphere, 8(4) (doi: 10.5194/tc-8-1375-2014)
Medley, B and 5 others (2015) Antarctic firn compaction rates from repeat-track airborne radar data: I. Methods. Ann. Glaciol., 56(70), 155166 (doi: 10.3189/2015AoG70A203)
Moore, GWK and Renfrew, IA (2005) Tip jets and barrier winds: a QuikSCAT climatology of high wind speed events around Greenland. J. Clim., 18(18), 37133725 (doi: 10.1175/JCLI3455.1)
Mouginot, J, Rignot, E and Scheuchl, B (2014) Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophys. Res. Lett., 41(5), 15761584 (doi: 10.1002/2013GL059069)
Navarro, FJ and Eisen, O (2009) Ground-penetrating radar. In Pellikka, P and Rees, WG eds. Remote sens. glaciers. Taylor & Francis, London, p. 927
Nicolas, J and Bromwich, D (2011) Precipitation changes in high Southern latitudes from global reanalyses: a cautionary tale. Surv. Geophys., 32(4), 475494
Nicolas, JP and 13 others (2017) January 2016 extensive summer melt in West Antarctica favoured by strong El Niño. Nat. Commun., 8, 15799
Noël, B and 5 others (2015) Evaluation of the updated regional climate model RACMO2.3: summer snowfall impact on the Greenland ice sheet. Cryosphere, 9(5), 18311844 (doi: 10.5194/tc-9-1831-2015)
Noël, B and 11 others (2017) Modelling the climate and surface mass balance of polar ice sheets using RACMO2, part 1: Greenland (1958–2016). Cryosph. Discuss., 135 (doi: 10.5194/tc-2017-201)
Palerme, C and 5 others (2016) Evaluation of current and projected Antarctic precipitation in CMIP5 models. Clim. Dyn., 48(1–2), 225239, ISSN (doi: 10.1007/s00382-016-3071-1)
Panzer, B and 8 others (2013) An ultra-wideband, microwave radar for measuring snow thickness on sea ice and mapping near-surface internal layers in polar firn. J. Glaciol., 59(214), 244254 (doi: 10.3189/2013JoG12J128)
Paolo, FS, Fricker, HA and Padman, L (2015) Volume loss from Antarctic ice shelves is accelerating. Science, 348(6232), 327332 (doi: 10.1126/science.aaa0940)
Park, JW and 5 others (2013) Sustained retreat of the Pine Island Glacier. Geophys. Res. Lett., 40(10), 21372142 (doi: 10.1002/grl.50379)
Picard, G, Fily, M and Gallee, H (2007) Surface melting derived from microwave radiometers: a climatic indicator in Antarctica. Ann. Glaciol., 46(1), 2934 (doi: 10.3189/172756407782871684)
Pritchard, H and 5 others (2012) Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484(7395), 502505 (doi: 10.1038/nature10968)
Raphael, MN and 8 others (2015) The Amundsen Sea Low: Variability, Change, and Impact on Antarctic Climate. Bull. Am. Meteorol. Soc., 97(1), 111121 (doi: 10.1175/BAMS-D-14-00018.1)
Rignot, E, Velicogna, I, Van Den Broeke, MR, Monaghan, A and Lenaerts, J (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett., 38(5) (doi: 10.1029/2011GL046583)
Scambos, TA and 22 others (2017) How much, how fast?: a science review and outlook for research on the instability of Antarctica's Thwaites Glacier in the 21st century. Glob. Planet. Change, 153, 1634 (doi: 10.1016/j.gloplacha.2017.04.008)
Scheuchl, B, Mouginot, J, Rignot, E, Morlighem, M and Khazendar, A (2016) Grounding line retreat of Pope, Smith, and Kohler Glaciers, West Antarctica, measured with Sentinel-1a radar interferometry data. Geophys. Res. Lett., 43(16), 85728579 (doi: 10.1002/2016GL069287)
Seefeldt, MW and Cassano, JJ (2008) An analysis of low-level jets in the greater Ross ice shelf region based on numerical simulations. Mon. Weather Rev., 136(11), 41884205 (doi: 10.1175/2008MWR2455.1)
Sigg, A and Neftel, A (1988) Seasonal variations in hydrogen peroxide in polar ice cores. Ann. Glaciol., 10, 157162 (doi: 10.1017/S0260305500004353)
Steig, EJ, Ding, Q, Battisti, DS and Jenkins, A (2012) Tropical forcing of circumpolar deep water inflow and outlet glacier thinning in the Amundsen Sea Embayment, West Antarctica. Ann. Glaciol., 53(60), 1928 (doi: 10.3189/2012AoG60A110)
Tedesco, M (2009) Assessment and development of snowmelt retrieval algorithms over Antarctica from K-band spaceborne brightness temperature (1979–2008). Remote Sens. Environ., 113(5), 979997 (doi: 10.1016/j.rse.2009.01.009)
Tedesco, M and Monaghan, AJ (2009) An updated Antarctic melt record through 2009 and its linkages to high-latitude and tropical climate variability. Geophys. Res. Lett., 36(18) (doi: 10.1029/2009GL039186)
Thoma, M, Jenkins, A, Holland, D and Jacobs, S (2008) Modelling circumpolar deep water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophys. Res. Lett., 35(18), L18602 (doi: 10.1029/2008GL034939)
Thomas, ER and 15 others (2017) Review of regional Antarctic snow accumulation over the past 1000 years. Clim. Past Discuss., 142 (doi: 10.5194/cp-2017-18)
Thomas, RH (1979) The dynamics of marine ice sheets. J. Glaciol., 24(90), 167177 (doi: 10.1017/S0022143000014726)
Torinesi, O, Fily, M and Genthon, C (2003) Variability and trends of the summer melt period of Antarctic ice margins since 1980 from microwave sensors. J. Clim., 16(7), 10471060
Trusel, LD, Frey, KE and Das, SB (2012) Antarctic surface melting dynamics: Enhanced perspectives from radar scatterometer data. J. Geophys. Res. Earth Surf., 117(2), 115 (doi: 10.1029/2011JF002126)
Trusel, LD, Frey, KE, Das, SB, Munneke, PK, Van Den Broeke, MR (2013) Satellite-based estimates of Antarctic surface meltwater fluxes. Geophys. Res. Lett., 40(23), 61486153 (doi: 10.1002/2013GL058138)
Turner, J and 6 others (2017) Atmosphere-ocean-ice interactions in the Amundsen Sea Embayment, West Antarctica. Rev. Geophys., 55(1), 235276 (doi: 10.1002/2016RG000532)
UCAR/NCAR/CISL/VETS (2014) The NCAR Command Language (Version 6.2.1 [Software] (doi: 10.5065/D6WD3XH5)
Unden, P and 26 others (2002) HIRLAM-5 Scientific documentation. Technical Report 1. Swed. Meteorol. and Hydrol. Inst., Norrköping, Sweden (doi: 10.1007/s00254-002-0712-y)
Van de Berg, WJ and Medley, B (2016) Brief communication: upper-air relaxation in RACMO2 significantly improves modelled interannual surface mass balance variability in Antarctica. The Cryosphere., 10, 459463 (doi: 10.5194/tc-10-459-2016)
Van den Broeke, MR, König-Langlo, G, Picard, G, Kuipers Munneke, P and Lenaerts, JTM (2010) Surface energy balance, melt and sublimation at Neumayer Station, East Antarctica? Antarct. Sci., 22(01), 87 (doi: 10.1017/S0954102009990538)
Van Wessem, J and 13 others (2014a) Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model? J. Glaciol., 60(222) (doi: 10.3189/2014JoG14J051)
Van Wessem, JM and 5 others (2014b) Updated cloud physics in a regional atmospheric climate model improves the modelled surface energy balance of Antarctica? Cryosphere, 8(1), 125135, ISSN (doi: 10.5194/tc-8-125-2014)
Van Wessem, JM and 10 others (2016) The modelled surface mass balance of the Antarctic Peninsula at 5.5 km horizontal resolution? Cryosphere, 10(1), 271285 (doi: 10.5194/tc-10-271-2016)
Van Wessem, JM and 17 others (2017) Modelling the climate and surface mass balance of polar ice sheets using RACMO2, part 2: Antarctica (1979–2016). Cryosph. Discuss., 135 (doi: 10.5194/tc-2017-202)
Vaughan, DG, Corr, HFJ, Doake, CSM and Waddington, ED (1999) Distortion of isochronous layers in ice revealed by ground-penetrating radar. Nature, 398(6725), 323326
Wouters, B and 7 others (2015) Dynamic thinning of glaciers on the Southern Antarctic Peninsula. Science, 348(6237), 899903 (doi: 10.1126/science.aaa5727)
Zwally, HJ and Fiegles, S (1994) Extent and duration of Antarctic surface melting. J. Glaciol., 40(136), 463476
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Lenaerts et al supplementary material

 PDF (135 KB)
135 KB


Altmetric attention score

Full text views

Total number of HTML views: 84
Total number of PDF views: 295 *
Loading metrics...

Abstract views

Total abstract views: 762 *
Loading metrics...

* Views captured on Cambridge Core between 27th November 2017 - 21st September 2018. This data will be updated every 24 hours.