Skip to main content Accessibility help
×
×
Home

Crevasse-induced Rayleigh-wave azimuthal anisotropy on Glacier de la Plaine Morte, Switzerland

  • Fabian Lindner (a1), Gabi Laske (a2), Fabian Walter (a1) and Adrian K. Doran (a2)

Abstract

Crevasses and englacial fracture networks route meltwater from a glacier's surface to the subglacial drainage system and thus influence glacial hydraulics. However, rapid fracture growth may also lead to sudden and potentially hazardous structural failure of unstable glaciers and ice dams, rifting of ice shelves, or iceberg calving. Here, we use passive seismic recordings to investigate the englacial fracture network on Glacier de la Plaine Morte, Switzerland. Glacier dynamics and the drainage of an ice-marginal lake give rise to numerous icequakes, the majority of which generate dispersed, high-frequency Rayleigh waves. A wide distribution of events allows us to study azimuthal anisotropy between 10 and 30 Hz in order to extract englacial seismic velocities in regions of preferentially oriented crevasses. Beamforming applied to a 100-m-aperture array reveals azimuthal anisotropy of Rayleigh-wave phase velocities reaching a strength of 8% at high frequencies. In addition, we find that the fast direction of wave propagation coincides with the observed surface strike of the narrow crevasses. Forward modeling and inversion of dispersion curves suggest that the azimuthal anisotropy is induced by a 40-m-thick crevassed layer at the surface of the glacier with 8% anisotropy in shear-wave velocity.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Crevasse-induced Rayleigh-wave azimuthal anisotropy on Glacier de la Plaine Morte, Switzerland
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Crevasse-induced Rayleigh-wave azimuthal anisotropy on Glacier de la Plaine Morte, Switzerland
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Crevasse-induced Rayleigh-wave azimuthal anisotropy on Glacier de la Plaine Morte, Switzerland
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

Hide All
Allen, RV (1978) Automatic earthquake recognition and timing from single traces. Bull. Seismol. Soc. Am., 68(5), 15211532.
Alvizuri, C and Tanimoto, T (2011) Azimuthal anisotropy from array analysis of Rayleigh waves in Southern California. Geophys. J. Int., 186(3), 11351151 (doi: 10.1111/j.1365-246X.2011.05093.x)
Assefa, S, McCann, C and Sothcott, J (2003) Velocities of compressional and shear waves in limestones. Geophys. Prospect., 51(1), 113 (doi: 10.1046/j.1365-2478.2003.00349.x)
Aster, R and Winberry, P (2017) Glacial seismology. Rep. Prog. Phys., 80, 074 (doi: 10.1088/1361-6633/aa8473)
Bakulin, A, Grechka, V and Tsvankin, I (2000) Estimation of fracture parameters from reflection seismic data–Part I: HTI model due to a single fracture set. Geophys., 65(6), 1788 (doi: 10.1190/1.1444863)
Backus, GE (1965) Possible forms of seismic anisotropy of the uppermost mantle under oceans. J. Geophys. Res., 70(14), 34293439 (doi: 10.1029/JZ070i014p03429)
Bartholomaus, TC and 5 others (2015) Subglacial discharge at tidewater glaciers revealed by seismic tremor. Geophys. Res. Lett., 42, 29 (doi: 10.1002/2015GL064590.Received)
Benn, DI, Warren, CR and Mottram, RH (2007) Calving processes and the dynamics of calving glaciers. Earth-Sci. Rev., 82, 143179.
Beyreuther, M and 5 others (2010) ObsPy: a Python toolbox for seismology. Seismol. Res. Lett., 81(3), 530533.
Bradford, JH, Nichols, J, Harper, JT and Meierbachtol, T (2013) Compressional and em wave velocity anisotropy in a temperate glacier due to basal crevasses, and implications for water content estimation. Ann. Glaciol., 54(64), 168178 (doi: 10.3189/2013AoG64A206)
Burnham, KP and Anderson, DR (2003) Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach. Springer Science & Business Media, New York, USA (doi: 10.1016/j.ecolmodel.2003.11.004)
Canny, J (1986) A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell., PAMI-8(6), 679698 (doi: 10.1109/TPAMI.1986.4767851)
Colgan, W and 6 others (2016) Glacier crevasses: observations, models, and mass balance implications. Rev. Geophys., 131 (doi: 10.1002/2014RG000468)
Cook, JM, Hodson, AJ and Irvine-Fynn, TDL (2016) Supraglacial weathering crust dynamics inferred from cryoconite hole hydrology. Hydrol. Process., 30(3), 433446 (doi: 10.1002/hyp.10602)
Crampin, S (1978) Seismic-wave propagation through a cracked solid: polarization as a possible dilatancy diagnostic. Geophys. J. R. Astron. Soc., 53(3), 467496 (doi: 10.1111/j.1365-246X.1978.tb03754.x)
Crampin, S (1981) A review of wave motion in anisotropic and cracked elastic-media. Wave. Motion., 3(4), 343391 (doi: 10.1016/0165-2125(81)90026-3)
Crampin, S (1994) The fracture criticality of crustal rocks. Geophys. J. Int., 118, 428438
Crampin, S, McGonigle, R and Bamford, D (1980) Estimating crack parameters from observations of P-wave velocity anisotropy. Geophys., 45(3), 345360 (doi: 10.1190/1.1441086)
Cuffey, K and Paterson, W (2010) The physics of glaciers. Academic Press, Oxford, UK
Das, SB and 6 others (2008) Fracture propagation to the base of the Greenland Ice Sheet during supraglacial lake drainage. Science, 1(May), 778781 (doi: 10.1017/CBO9781107415324.004)
Diez, A and Eisen, O (2015) Seismic wave propagation in anisotropic ice – Part 1: elasticity tensor and derived quantities from ice-core properties. Cryosphere, 9(1), 367384 (doi: 10.5194/tc-9-367-2015)
Diez, A and 7 others (2014) Influence of ice crystal anisotropy on seismic velocity analysis. Ann. Glaciol., 55(67), 97106 (doi: 10.3189/2014AoG67A002)
Diez, A and 8 others (2016) Ice shelf structure derived from dispersion curve analysis of ambient seismic noise, Ross Ice Shelf, Antarctica. Geophys. J. Int., 205(2), 785795 (doi: 10.1093/gji/ggw036)
Fahnestock, M, Bindschadler, R, Kwok, R and Jezek, K (1993) Greenland Ice Sheet surface properties and Ice Dynamics from ERS-1 SAR imagery. Science, 262(5139), 15301534 (doi: 10.1126/science.262.5139.1530)
Finger, D and 13 others (2013) Identification of glacial meltwater runoff in a karstic environment and its implication for present and future water availability. Hydrol. Earth Syst. Sci., 17(8), 32613277 (doi: 10.5194/hess-17-3261-2013)
Flowers, GE and Clarke, GKC (2002) A multicomponent coupled model of glacier hydrology 1. Theory and synthetic examples. J. Geophys. Res. Solid. Earth., 107(B11), ECV 9–1–ECV 9–17 (doi: 10.1029/2001JB001122)
Fountain, AG and Walder, JS (1998) Water flow through temperate glaciers. Rev. Geophys., 36(97), 299
Freed-Brown, J, Amundson, JM, MacAyeal, DR and Zhang, WW (2012) Blocking a wave: frequency band gaps in ice shelves with periodic crevasses. Ann. Glaciol., 53(60), 8589 (doi: 10.3189/2012AoG60A120)
Gerstoft, P and Tanimoto, T (2007) A year of microseisms in southern California. Geophys. Res. Lett., 34(20), L20304 (doi: 10.1029/2007GL031091)
Gimbert, AF, Tsai, VC, Bartholomaus, TC, Jason, M and Walter, JI (2016) Sub-seasonal pressure, geometry and sediment transport changes observed in subglacial channels. Geophys. Res. Lett., 43, 37863794 (doi: 10.1002/2016GL068337)
Haney, MM and Tsai, VC (2017) Perturbational and nonperturbational inversion of Rayleigh-wave velocities. Geophys., 82(3), F15F28 (doi: 10.1190/geo2016-0397.1)
Harper, JT, Bradford, JH, Humphrey, NF and Meierbachtol, TW (2010) Vertical extension of the subglacial drainage system into basal crevasses. Nature, 467(7315), 579582 (doi: 10.1038/nature09398)
Hudleston, PJ (2015) Structures and fabrics in glacial ice: a review. J. Struct. Geol., 81, 127 (doi: 10.1016/j.jsg.2015.09.003)
Hudson, JA (1981) Wave speeds and attenuation of elastic waves in material containing cracks. Geophys. J. R. Astron. Soc., 64, 133150 (doi: 10.1111/j.1365-246X.1981.tb02662.x)
Hunter, JD (2007) Matplotlib: A 2D graphics environment. Comput. Sci. Eng., 9(3), 9095.
Huss, M, Voinesco, A and Hoelzle, M (2013) Implications of climate change on Glacier de la Plaine Morte, Switzerland. Geogr. Helv., 68(4), 227237 (doi: 10.5194/gh-68-227-2013)
Iken, A and Bindschadler, RA (1986) Combined measurements of subglacial water pressure and surface velocity of Findelengletscher, Switzerland: conclusions about drainage system and sliding mechanism. J. Glaciol., 32(110), 101119
Irvine-Fynn, TDL, Hodson, AJ, Moorman, BJ, Vatne, G and Hubbard, AL (2011) Polythermal glacier hydrology: a review. Rev. Geophys., 49(2010), 137 (doi: 10.1029/2010RG000350)
Jähne, B and Haussecker, H and Geissler, P (1999) Handbook of Computer Vision and Applications. 2nd Edn. Citeseer, San Diego, USA
Jezek, K and Bentley, C (1979) Electromagnetic sounding of bottom crevasses on the Ross Ice Shelf, Antarctica. J. Glaciol., 24(90), 321330
Kohnen, H (1974) The temperature dependence of seismic waves. J. Glaciol., 13(67), 144147.
Krimmel, RM and Meier, MF (1975) Glacier applications of ERTS images. J. Glaciol., 15, 391402.
Langhammer, L and 6 others (2018) Glacier bed surveying with helicopter-borne dual-polarization ground-penetrating radar. J. Glaciol., in press
Maurel, A, Lund, F and Montagnat, M (2015) Propagation of elastic waves through textured polycrystals: application to ice. Proc. Royal Soc. A: Math. Phys. Eng. Sci., 471(2177), 20140988–20140988 (doi: 10.1098/rspa.2014.0988)
Montagner, JP and Anderson, DL (1989) Petrological constraints on seismic anisotropy. Phys. Earth. Planet. Inter., 54(1–2), 82105 (doi: 10.1016/0031-9201(89)90189-1)
Montagner, JP and Nataf, HC (1986) A simple method for inverting the azimuthal anisotropy of surface waves. J. Geophys. Res., 91, 511520.
Navarro, FJ, Macheret, YY and Benjumea, B (2005) Application of radar and seismic methods for the investigation of temperate glaciers. J. Appl. Geophy., 57(3), 193211 (doi: 10.1016/j.jappgeo.2004.11.002)
Neave, KG and Savage, JC (1970) Icequakes on the Athabasca Glacier. J. Geophys. Res., 75(8), 1351 (doi: 10.1029/JB075i008p01351)
Phillips, T, Rajaram, H and and Steffen, K (2010) Cryo-hydrologic warming: a potential mechanism for rapid thermal response of ice sheets. Geophys. Res. Lett., 37(20), L20503 (doi: 10.1029/2010GL044397)
Picotti, S, Vuan, A, Carcione, JM, Horgan, HJ and Anandakrishnan, S (2015) Anisotropy and crystalline fabric of Whillans Ice Stream (West Antarctica) inferred from multicomponent seismic data. J. Geophys. Res. B: Solid. Earth., 63, 42374262 (doi: 10.1002/2014JB011591)
Podolskiy, EA and Walter, F (2016) Cryoseismology. Rev. Geophys., 54, 119161. (doi: 10.1002/2015RG000504.Received)
Pralong, A and Funk, M (2005) Dynamic damage model of crevasse opening and application to glacier calving. J. Geophys. Res. B: Solid. Earth., 110(1), 112 (doi: 10.1029/2004JB003104)
Rost, S and Thomas, C (2002) Array seismology: methods and applications. Rev. Geophys., 40(3), 1008 (doi: 10.1029/2000RG000100)
Röthlisberger, H (1977) Ice avalanches. J. Glaciol., 19(81), 669671.
Roux, PF, Walter, F, Riesen, P, Sugiyama, S and Funk, M (2010) Observation of surface seismic activity changes of an Alpine glacier during a glacier-dammed lake outburst. J. Geophys. Res. Earth. Surf., 115(3), 113, ISSN 21699011 (doi: 10.1029/2009JF001535)
Sambridge, M (1999a) Geophysical inversion with a neighbourhood algorithm-II. Appraising the ensemble. Geophys. J. Int., 138, 727746 (doi: 10.1046/j.1365-246x.1999.00900.x)
Sambridge, M (1999b) Geophysical inversion with a neighbourhood algorithm-I. Searching a parameter space. Geophys. J. Int., 138(May), 479494 (doi: 10.1046/j.1365-246x.1999.00900.x)
Savage, MK (1999) Seismic anisotropy and mantle deformation: what have we learnt from shear wave splitting?. Rev. Geophys., 37(1), 65106 (doi: 10.1029/98RG02075)
Smith, ML and Dahlen, Fa (1973) The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium. J. Geophys. Res., 78(17), 3321 (doi: 10.1029/JB078i017p03321)
Smith, EC and 6 others (2017) Ice fabric in an Antarctic ice stream interpreted from seismic anisotropy. Geophys. Res. Lett., 44(8), 37103718 (doi: 10.1002/2016GL072093)
Tison, JL and Hubbard, B (2000) Ice crystallographic evolution at a temperate glacier: Glacier de Tsanfleuron, Switzerland. Geol. Soc. London., Special Publications, 176(1), 2338 (doi: 10.1144/GSL.SP.2000.176.01.03)
Van Der Veen, CJ (1998) Fracture mechanics approach to penetration of surface crevasses on glaciers. Cold. Reg. Sci. Technol., 27(1), 3147 (doi: 10.1016/S0165-232X(97)00022-0)
Walter, F (2009) Seismic activity on Gornergletscher during Gornersee Outburst Floods. Ph.D. thesis
Walter, F and 5 others (2009) Moment tensor inversions of icequakes on Gornergletscher, Switzerland. Bull. Seismol. Soc. Am., 99(212), 333 (doi: 10.1785/0120080110)
Walter, F, Dreger, DS, Clinton, JF, Deichmann, N and Funk, M (2010) Evidence for near-horizontal tensile faulting at the base of Gornergletscher, Switzerland. Bull. Seismol. Soc. Am., 100(2), 458472 (doi: 10.1785/0120090083)
Walter, F and 5 others (2015) Using glacier seismicity for phase velocity measurements and Green's function retrieval. Geophys. J. Int., 201(3), 17221737 (doi: 10.1093/gji/ggv069)
Wathelet, M, Jongmans, D and Ohrnberger, M (2004) Surface wave inversion using a direct search algorithm and its application to ambient vibration measurements. Near Surf. Geophys., 2, 211221
Wathelet, M, Jongmans, D, Ohrnberger, M and Bonnefoy-Claudet, S (2008) Array performances for ambient vibrations on a shallow structure and consequences over Vs inversion. J. Seismol., 12(1), 119 (doi: 10.1007/s10950-007-9067-x)
Weaver, CS and Malone, SD (1979) Seismic evidence for discrete glacier motion at the rock-ice interface. J. Glaciol., 23(89), 171184 (doi: 10.1017/S0022143000029816)
Wessel, P, Smith, WHF, Scharroo, R, Luis, J and Wobbe, F (2013) Generic mapping tools: improved version released. Eos, Trans. Am. Geophys. Union., 94(45), 409410.
Winberry, JP, Anandakrishnan, S, Wiens, DA, Alley, RB and Christianson, K (2011) Dynamics of stick-slip motion, Whillans Ice Stream, Antarctica. Earth. Planet. Sci. Lett., 305(3-4), 283289 (doi: 10.1016/j.epsl.2011.02.052)
Zhan, Z, Tsai, VC, Jackson, JM and Helmberger, D (2013) Ambient noise correlation on the Amery Ice Shelf, East Antarctica. Geophys. J. Int., 196, 17 (doi: 10.1093/gji/ggt488)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
PDF
Supplementary materials

Lindner et al. supplementary material
Figures S1-S7 and Table S1

 PDF (14.2 MB)
14.2 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed