Skip to main content

Sensitivity of the Lambert-Amery glacial system to geothermal heat flux

  • M. L. Pittard (a1) (a2), J. L. Roberts (a2) (a3), B. K. Galton-Fenzi (a2) (a3) and C. S. Watson (a4)

Geothermal heat flux (GHF) is one of the key thermal boundary conditions for ice-sheet models. We assess the sensitivity of the Lambert-Amery glacial system in East Antarctica to four different GHF datasets using a regional ice-sheet model. A control solution of the regional model is initialised by minimising the misfit to observations through an optimisation process. The Lambert-Amery glacial system simulation contains temperate ice up to 150 m thick and has an average basal melt of 1.3 mm a−1, with maximum basal melting of 504 mm a−1. The simulations which use a relatively high GHF compared to the control solution increase the volume and area of temperate ice, which causes higher surface velocities at higher elevations, which leads to the advance of the grounding line. The grounding line advance leads to changes in the local flow configuration, which dominates the changes within the glacial system. To investigate the difference in spatial patterns within the geothermal datasets, they were scaled to have the same median value. These scaled GHF simulations showed that the ice flow was most sensitive to the spatial variation in the underlying GHF near the ice divides and on the edges of the ice streams.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Sensitivity of the Lambert-Amery glacial system to geothermal heat flux
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Sensitivity of the Lambert-Amery glacial system to geothermal heat flux
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Sensitivity of the Lambert-Amery glacial system to geothermal heat flux
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Hide All
An, M and 8 others (2015) Temperature, lithosphere-asthenosphere boundary, and heat flux beneath the Antarctic Plate inferred from seismic velocities. J. Geophys. Res.: Solid Earth, 120(12), 87208742, ISSN 2169-9356 (doi: 10.1002/2015JB011917)
Aschwanden, A, Bueler, E, Khroulev, C and Blatter, H (2012) An enthalpy formulation for glaciers and ice sheets. J. Glaciol., 58(209), 441457 (doi: 10.3189/2012JoG11J088)
Bell, RE (2008) The role of subglacial water in ice-sheet mass balance. Nat. Geosci., 1, 297304 (doi: 10.1038/ngeo186)
Bell, RE, Studinger, M, Shuman, CA, Fahnestock, MA and Joughin, I (2007) Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams. Nature, 445, 904907 (doi: 10.1038/nature05554)
Budd, W and Jacka, T (1989) A review of ice rheology for ice sheet modelling. Cold Reg. Sci. Technol., 16(2), 107144, ISSN 0165-232X (doi: 10.1016/0165-232X(89)90014-1)
Budd, WF, Warner, RC, Jacka, TH, Li, J and Treverrow, A (2013) Ice flow relations for stress and strain-rate components from combined shear and compression laboratory experiments. J. Glaciol., 59, 374392 (doi: 10.3189/2013JoG12J106)
Bueler, E and Brown, J (2009) Shallow shelf approximation as a sliding law in a thermomechanically coupled ice sheet model. J. Geophys. Res. (Earth Surface) , 114, 3008 (doi: 10.1029/2008JF001179)
Bueler, E, Brown, J and Lingle, C (2007) Exact solutions to the thermomechanically coupled shallow-ice approximation: effective tools for verification. J. Glaciol., 53, 499516 (doi: 10.3189/002214307783258396)
Carson, CJ and Pittard, ML (2012) A reconaissance crustal heat production assessment of the Australian Antarctic Territory (AAT). Geoscience, Australia
Carson, CJ, McLaren, S, Roberts, JL, Boger, SD and Blankenship, DD (2014) Hot rocks in a cold place: high sub-glacial heat flow in East Antarctica. J. Geol. Soc., 171(1), 912 (doi: 10.1144/jgs2013-030)
Fisher, AT, Mankoff, KD, Tulaczyk, SM, Tyler, SW and Foley, N and the WISSARD Science Team (2015) High geothermal heat flux measured below the West Antarctic Ice Sheet. Sci. Adv., 1(6) (doi: 10.1126/sciadv.1500093)
Fox Maule, C, Purucker, ME, Olsen, N and Mosegaard, K (2005) Heat flux anomalies in Antarctica revealed by Satellite magnetic data. Science, 309(5733), 464467 (doi: 10.1126/science.1106888)
Fretwell, P, Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A. (2013) Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere, 7, 375393 (doi: 10.5194/tc-7-375-2013)
Fricker, HA and 9 others (2002) Redefinition of the Amery ice shelf, East Antarctica, grounding zone. J. Geophys. Res. (Solid Earth) , 107, 2092 (doi: 10.1029/2001JB000383)
Galton-Fenzi, BK, Hunter, JR, Coleman, R, Marsland, SJ and Warner, RC (2012) Modeling the basal melting and marine ice accretion of the Amery Ice Shelf. J. Geophys. Res. (Oceans) , 117, C09031 (doi: 10.1029/2012JC008214)
Golledge, NR, Fogwill, CJ, Mackintosh, AN and Buckley, KM (2012) Dynamics of the last glacial maximum Antarctic ice-sheet and its response to ocean forcing. Proc. Natl. Acad. Sci. USA, 109, 1605216056 (doi: 10.1073/pnas.1205385109)
Golledge, NR and 5 others (2015) The multi-millennial Antarctic commitment to future sea-level rise. Nature, 526, 421425 (doi: 10.1038/nature15706)
Gong, Y, Cornford, SL and Payne, AJ (2014) Modelling the response of the Lambert Glacier-Amery Ice Shelf system, East Antarctica, to uncertain climate forcing over the 21st and 22nd centuries. Cryosphere, 8(3), 10571068 (doi: 10.5194/tc-8-1057-2014)
Hansen, I and Greve, R (1996) Polythermal modelling of steady states of the Antarctic ice sheet in comparison with the real world. Ann. Glaciol., 23, 382387 (doi: 10.3198/1996AoG23-382-387)
Kerr, A and Huybrechts, P (1999) The response of the East Antarctic ice-sheet to the evolving tectonic configuration of the Transantarctic Mountains. Global Planet. Change, 23(1–4), 213229 (doi: 10.1016/S0921-8181(99)00058-2)
King, MA, Coleman, R, Morgan, PJ and Hurd, RS (2007) Velocity change of the Amery Ice Shelf, East Antarctica, during the period 1968-1999. J. Geophys. Res. (Earth Surface) , 112, F01013 (doi: 10.1029/2006JF000609)
King, MA and 5 others (2012) Lower satellite-gravimetry estimates of Antarctic sea-level contribution. Nature, 491, 586589 (doi: 10.1038/nature11621)
Larour, E, Morlighem, M, Seroussi, H, Schiermeier, J and Rignot, E (2012) Ice flow sensitivity to geothermal heat flux of Pine Island Glacier, Antarctica. J. Geophys. Res. (Earth Surface) , 117, F04023 (doi: 10.1029/2012JF002371)
Le Brocq, AM, Payne, AJ and Vieli, A (2010) An improved Antarctic dataset for high resolution numerical ice sheet models (ALBMAP v1). Earth Syst. Sci. Data, 2, 247260 (doi: 10.5194/eed-2-247-2010)
Levermann, A and 5 others (2012) Kinematic first-order calving law implies potential for abrupt ice-shelf retreat. Cryosphere, 6(2), 273286 (doi: 10.5194/tc-6-273-2012)
Lliboutry, L and Duval, P (1985) Various isotropic and anisotropic ices found in glaciers and polar ice caps and their corresponding rheologies. Annales Geophysicae, 3(2), 207224
Llubes, M, Lanseau, C and Rémy, F (2006) Relations between basal condition, subglacial hydrological networks and geothermal flux in Antarctica. Earth Planet. Sci. Lett., 241, 655662 (doi: 10.1016/j.epsl.2005.10.040)
Martin, MA and 6 others (2011) The Potsdam Parallel Ice Sheet Model (PISM-PIK) - part 2: dynamic equilibrium simulation of the Antarctic ice sheet. Cryosphere, 5, 727740 (doi: 10.5194/tc-5-727-2011)
Morlighem, M, Seroussi, H, Larour, E and Rignot, E (2013) Inversion of basal friction in Antarctica using exact and incomplete adjoints of a higher-order model. J. Geophys. Res. (Earth Surface) , 118, 17461753 (doi: 10.1002/jgrf.20125)
Näslund, JO, Jansson, P, Fastook, JL, Johnson, J and Andersson, L (2005) Detailed spatially distributed geothermal heat-flow data for modeling of basal temperatures and meltwater production beneath the Fennoscandian ice sheet. Ann. Glaciol., 40, 95101 (doi: 10.3189/172756405781813582)
Pattyn, F (2010) Antarctic subglacial conditions inferred from a hybrid ice sheet/ice stream model. Earth Planet. Sci. Lett., 295, 451461 (doi: 10.1016/j.epsl.2010.04.025)
Pittard, ML and 5 others (2015) Velocities of the Amery Ice Shelf's primary tributary glaciers, 2004–12. Antarct. Sci., 27, 511523, ISSN 1365-2079 (doi: 10.1017/S0954102015000231)
Pittard, ML, Galton-Fenzi, BK, Roberts, JL and Watson, CS (2016) Organization of ice flow by localized regions of elevated geothermal heat flux. Geophys. Res. Lett., 43, ISSN 1944-8007 (doi: 10.1002/2016GL068436)
Pollard, D, DeConto, RM and Nyblade, AA (2005) Sensitivity of Cenozoic Antarctic ice sheet variations to geothermal heat flux. Global Planet. Change, 49(1–2), 6374 (doi: 10.1016/j.gloplacha.2005.05.003)
Pritchard, HD and 5 others (2012) Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484, 502505 (doi: 10.1038/nature10968)
Rignot, E and 6 others (2008) Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geosci., 1, 106110 (doi: 10.1038/ngeo102)
Rignot, E, Mouginot, J and Scheuchl, B (2011) MEaSUREs InSAR-Based Antarctica Ice Velocity Map [900 m]. National Snow and Ice Data Center, Boulder, Colorado, USA (doi: 10.5067/MEASURES/CRYOSPHERE/nsidc-0484.001)
Rogozhina, I and 6 others (2012) Effects of uncertainties in the geothermal heat flux distribution on the Greenland Ice Sheet: an assessment of existing heat flow models. J. Geophys. Res. (Earth Surface) , 117, F02025 (doi: 10.1029/2011JF002098)
Sandiford, M and McLaren, S (2002) Tectonic feedback and the ordering of heat producing elements within the continental lithosphere. Earth Planet. Sci. Lett., 204(1–2), 133150, ISSN 0012-821X (doi: 10.1016/S0012-821X(02)00958-5)
Sato, T and Greve, R (2012) Sensitivity experiments for the Antarctic ice sheet with varied sub-ice-shelf melting rates. Ann. Glaciol., 53, 221228 (doi: 10.3189/2012AoG60A042)
Shapiro, NM and Ritzwoller, MH (2004) Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica. Earth Planet. Sci. Lett., 223(1–2), 213224 (doi: 10.1016/j.epsl.2004.04.011)
Shepherd, A and others (2012) A reconciled estimate of Ice-Sheet mass balance. Science, 338, 1183 (doi: 10.1126/science.1228102)
van Wessem, JM and 13 others (2014) Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model. J. Glaciol., 60, 761770 (doi: 10.3189/2014JoG14J051)
Wen, J and 5 others (2010) Basal melting and freezing under the Amery Ice Shelf, East Antarctica. J. Glaciol., 56, 8190 (doi: 10.3189/002214310791190820)
Winkelmann, R and 6 others (2011) The Potsdam Parallel Ice Sheet Model (PISM-PIK) – part 1: model description. Cryosphere, 5(3), 715726 (doi: 10.5194/tc-5-715-2011)
Yu, J, Liu, H, Jezek, KC, Warner, RC and Wen, J (2010) Analysis of velocity field, mass balance, and basal melt of the Lambert Glacier-Amery Ice Shelf system by incorporating Radarsat SAR interferometry and ICESat laser altimetry measurements. J. Geophys. Res. (Solid Earth) , 115(B14), B11102 (doi: 10.1029/2010JB007456)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Pittard supplementary material
Pittard supplementary material 1

 PDF (10.3 MB)
10.3 MB


Full text views

Total number of HTML views: 22
Total number of PDF views: 202 *
Loading metrics...

Abstract views

Total abstract views: 383 *
Loading metrics...

* Views captured on Cambridge Core between 19th September 2016 - 21st April 2018. This data will be updated every 24 hours.