Skip to main content Accessibility help
×
Home

A debris-covered glacier at Kerguelen (49°S, 69°E) over the past 15 000 years

Published online by Cambridge University Press:  04 November 2020


Joanna Charton
Affiliation:
Université Paris 1 Panthéon-Sorbonne, CNRS Laboratoire de Géographie Physique, 92195 Meudon, France Aix-Marseille University, CNRS, IRD, INRAE, Collège de France, UM 34 CEREGE, 13545 Aix-en-Provence, France
Vincent Jomelli
Affiliation:
Université Paris 1 Panthéon-Sorbonne, CNRS Laboratoire de Géographie Physique, 92195 Meudon, France Aix-Marseille University, CNRS, IRD, INRAE, Collège de France, UM 34 CEREGE, 13545 Aix-en-Provence, France
Irene Schimmelpfennig
Affiliation:
Aix-Marseille University, CNRS, IRD, INRAE, Collège de France, UM 34 CEREGE, 13545 Aix-en-Provence, France
Deborah Verfaillie
Affiliation:
Earth and Life Institute, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
Vincent Favier
Affiliation:
Université Grenoble Alpes, IGE, CNRS, 38058 Grenoble, France
Fatima Mokadem
Affiliation:
Université Paris 1 Panthéon-Sorbonne, CNRS Laboratoire de Géographie Physique, 92195 Meudon, France
Adrien Gilbert
Affiliation:
Université Grenoble Alpes, IGE, CNRS, 38058 Grenoble, France
Fanny Brun
Affiliation:
Université Grenoble Alpes, IGE, CNRS, 38058 Grenoble, France
Georges Aumaître
Affiliation:
Aix-Marseille University, CNRS, IRD, INRAE, Collège de France, UM 34 CEREGE, 13545 Aix-en-Provence, France ASTER Team
Didier L. Bourlès
Affiliation:
Aix-Marseille University, CNRS, IRD, INRAE, Collège de France, UM 34 CEREGE, 13545 Aix-en-Provence, France ASTER Team
Karim Keddadouche
Affiliation:
Aix-Marseille University, CNRS, IRD, INRAE, Collège de France, UM 34 CEREGE, 13545 Aix-en-Provence, France ASTER Team
Corresponding
E-mail address:

Abstract

Debris-covered glaciers constitute a large part of the world's cryosphere. However, little is known about their long-term response to multi-millennial climate variability, in particular in the Southern Hemisphere. Here, we provide first insights into the response of a debris-covered glacier to multi-millennial climate variability in the sub-Antarctic Kerguelen Archipelago, which can be compared to that of recently investigated debris-free glaciers. We focus on the Gentil Glacier and present 13 new 36Cl cosmic-ray exposure ages from moraine boulders. The Gentil Glacier experienced at least two glacial advances: the first one during the Late Glacial (19.0–11.6 ka) at ~14.3 ka and the second one during the Late Holocene at ~2.6 ka. Both debris-covered and debris-free glaciers advanced broadly synchronously during the Late Glacial, most probably during the Antarctic Cold Reversal event (14.5–12.9 ka). This suggests that both glacier types at Kerguelen were sensitive to abrupt temperature changes recorded in Antarctic ice cores, associated with increased moisture. However, during the Late Holocene, the advance at ~2.6 ka was not observed in other glaciers and seems to be an original feature of the debris-covered Gentil Glacier, related to either distinct dynamics or to distinct sensitivity to precipitation changes.


Type
Research Article
Copyright
Copyright © Antarctic Science Ltd 2020

Access options

Get access to the full version of this content by using one of the access options below.

References

Berthier, E., le Bris, R., Mabileau, L., Testut, L. & Rémy, F. 2009. Ice wastage on the Kerguelen Islands (49°S, 69°E) between 1963 and 2006. Journal of Geophysical Research - Earth Surface, 114, 10.1029/2008JF001192.CrossRefGoogle Scholar
Brun, F., Wagnon, P., Berthier, E., Jomelli, V., Maharjan, S.B., Shrestha, F. & Kraaijenbrink, P.D.A. 2019. Heterogeneous influence of glacier morphology on the mass balance variability in High Mountain Asia. Journal of Geophysical Research: Earth Surface, 124, 10.1029/2018JF004838.Google Scholar
Brun, F., Wagnon, P., Berthier, E., Shea, J.M., Immerzeel, W.W., Kraaijenbrink, P.D.A., et al. 2018. Ice cliff contribution to the tongue-wide ablation of Changri Nup Glacier, Nepal, central Himalaya. The Cryosphere, 12, 10.5194/tc-12-3439-2018.CrossRefGoogle Scholar
Darvill, C.M., Bentley, M.J., Stokes, C.R. & Shulmeister, J. 2016. The timing and cause of glacial advances in the southern mid-latitudes during the last glacial cycle based on a synthesis of exposure ages from Patagonia and New Zealand. Quaternary Science Reviews, 149, 10.1016/j.quascirev.2016.07.024.CrossRefGoogle Scholar
Evans, D.J.A. 2009. Controlled moraines: origins, characteristics and palaeoglaciological implications. Quaternary Science Reviews, 28, 10.1016/j.quascirev.2008.10.024.CrossRefGoogle Scholar
Favier, V., Verfaillie, D., Berthier, E., Menegoz, M., Jomelli, V., Kay, J.E., et al. 2016. Atmospheric drying as the main driver of dramatic glacier wastage in the southern Indian Ocean. Scientific Reports, 6, 10.1038/srep32396.CrossRefGoogle ScholarPubMed
Fernández-Fernández, J.M., Palacios, D., Andrés, N., Schimmelpfennig, I., Tanarro, L.M., Brynjólfsson, S., et al. 2020. Constraints on the timing of debris-covered and rock glaciers: an exploratory case study in the Hólar area, northern Iceland. Geomorphology, 361, 10.1016/j.geomorph.2020.107196.CrossRefGoogle Scholar
Fernández-Fernández, J.M., Palacios, D., García-Ruiz, J.M., Andrés, N., Schimmelpfennig, I., Gómez-Villar, A., et al. 2017. Chronological and geomorphological investigation of fossil debris-covered glaciers in relation to deglaciation processes: a case study in the Sierra de La Demanda, northern Spain. Quaternary Science Reviews, 170, 10.1016/j.quascirev.2017.06.034.CrossRefGoogle Scholar
Frenot, Y., Gloaguen, J.-C., van de Vijver, B. & Beyens, L. 1997. Datation de quelques sédiments tourbeux holocènes et oscillations glaciaires aux îles Kerguelen. Comptes Rendus de l'Academie des Sciences - Serie III, 320, 10.1016/S0764-4469(97)84712-9.Google Scholar
Graham, A.G.C., Kuhn, G., Meisel, O., Hillenbrand, C.-D., Hodgson, D.A., Ehrmann, W., et al. 2017. Major advance of South Georgia glaciers during the Antarctic Cold Reversal following extensive sub-Antarctic glaciation. Nature Communications, 8, 10.1038/ncomms14798.CrossRefGoogle ScholarPubMed
Heyman, J., Stroeven, A.P., Harbor, J.M. & Caffee, M.W. 2011. Too young or too old: evaluating cosmogenic exposure dating based on an analysis of compiled boulder exposure ages. Earth and Planetary Science Letters, 302, 10.1016/j.epsl.2010.11.040.CrossRefGoogle Scholar
Jomelli, V., Favier, V., Vuille, M., Braucher, R., Martin, L., Blard, P.-H., et al. 2014. A major advance of tropical Andean glaciers during the Antarctic Cold Reversal. Nature, 513, 10.1038/nature13546.CrossRefGoogle Scholar
Jomelli, V., Mokadem, F., Schimmelpfennig, I., Chapron, E., Rinterknecht, V., Favier, V., et al. 2017. Sub-Antarctic glacier extensions in the Kerguelen region (49°S, Indian Ocean) over the past 24,000 years constrained by 36Cl moraine dating. Quaternary Science Reviews, 162, 10.1016/j.quascirev.2017.03.010.CrossRefGoogle Scholar
Jomelli, V., Schimmelpfennig, I., Favier, V., Mokadem, F., Landais, A., Rinterknecht, V., et al. 2018. Glacier extent in sub-Antarctic Kerguelen archipelago from MIS 3 period: evidence from 36Cl dating. Quaternary Science Reviews, 183, 10.1016/j.quascirev.2018.01.008.CrossRefGoogle Scholar
Kääb, A., Berthier, E., Nuth, C., Gardelle, J. & Arnaud, Y. 2012. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488, 10.1038/nature11324.CrossRefGoogle ScholarPubMed
Mayr, E. & Hagg, W. 2019. Debris-covered glaciers. In Heckmann, T. & Morche, D., eds. Geomorphology of proglacial systems. Landform and sediment dynamics in recently deglaciated alpine landscapes. Cham: Springer International Publishing, 5971.CrossRefGoogle Scholar
Moran, A.P., Ivy Ochs, S., Vockenhuber, C. & Kerschner, H. 2016. Rock glacier development in the Northern Calcareous Alps at the Pleistocene-Holocene boundary. Geomorphology, 273, 10.1016/j.geomorph.2016.08.017.CrossRefGoogle Scholar
Moreno, P.I., Vilanova, I., Villa-Martínez, R., Dunbar, R.B., Mucciarone, D.A., Kaplan, M.R., et al. 2018. Onset and evolution of Southern Annular Mode-like changes at centennial timescale. Scientific Reports, 8, 10.1038/s41598-018-21836-6.CrossRefGoogle ScholarPubMed
Ojha, S., Fujita, K., Sakai, A., Nagai, H. & Lamsal, D. 2017. Topographic controls on the debris-cover extent of glaciers in the Eastern Himalayas: regional analysis using a novel high-resolution glacier inventory. Quaternary International, 455, 10.1016/j.quaint.2017.08.007.CrossRefGoogle Scholar
Pedro, J.B., Bostock, H.C., Bitz, C.M., He, F., Vandergoes, M.J., Steig, E.J., et al. 2015. The spatial extent and dynamics of the Antarctic Cold Reversal. Nature Geoscience, 9, 10.1038/ngeo2580.Google Scholar
Putnam, A.E., Denton, G.H., Schaefer, J.M., Barrell, D.J.A., Andersen, B.G., Finkel, R.C., et al. 2010. Glacier advance in southern middle-latitudes during the Antarctic Cold Reversal. Nature Geoscience, 3, 10.1038/ngeo962.CrossRefGoogle Scholar
Raup, B., Racoviteanu, A., Khalsa, S.J.S., Helm, C., Armstrong, R. & Arnaud, Y. 2007. The GLIMS geospatial glacier database: a new tool for studying glacier change. Global and Planetary Change, 56, 10.1016/j.gloplacha.2006.07.018.CrossRefGoogle Scholar
Rudolph, E.M., Hedding, D.W., Fabel, D., Hodgson, D.A., Gheorghiu, D.M., Shanks, R. & Nel, W. 2020. Early glacial maximum and deglaciation at sub-Antarctic Marion Island from cosmogenic 36Cl exposure dating. Quaternary Science Reviews, 231, 10.1016/j.quascirev.2020.106208.CrossRefGoogle Scholar
Sagredo, E.A., Kaplan, M.R., Araya, P.S., Lowell, T. V., Aravena, J.C., Moreno, P.I., et al. 2018. Trans-pacific glacial response to the Antarctic Cold Reversal in the southern mid-latitudes. Quaternary Science Reviews, 188, 10.1016/j.quascirev.2018.01.011.CrossRefGoogle Scholar
Salerno, F., Thakuri, S., Tartari, G., Nuimura, T., Sunako, S., Sakai, A. & Fujita, K. 2017. Debris-covered glacier anomaly? Morphological factors controlling changes in the mass balance, surface area, terminus position, and snow line altitude of Himalayan glaciers. Earth and Planetary Science Letters, 471, 10.1016/j.epsl.2017.04.039.CrossRefGoogle Scholar
Scherler, D., Wulf, H. & Gorelick, N. 2018. Global assessment of supraglacial debris-cover extents. Geophysical Research Letters, 45, 10.1029/2018GL080158.CrossRefGoogle Scholar
Thompson, D.W.J., Solomon, S., Kushner, P.J., England, M.H., Grise, K.M. & Karoly, D.J. 2011. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nature Geoscience, 4, 10.1038/ngeo1296.CrossRefGoogle Scholar
Thost, D.E. & Truffer, M. 2008. Glacier recession on Heard Island, southern Indian Ocean. Arctic, Antarctic, and Alpine Research, 40, 10.1657/1523-0430(06-084)[THOST]2.0.CO;2.CrossRefGoogle Scholar
Van der Putten, N., Verbruggen, C., Björck, S., Michel, E., Disnar, J.-R., Chapron, E., et al. 2015. The Last termination in the South Indian Ocean: a unique terrestrial record from Kerguelen Islands (49°S) situated within the Southern Hemisphere westerly belt. Quaternary Science Reviews, 122, 10.1016/j.quascirev.2015.05.010.CrossRefGoogle Scholar
Verfaillie, D., Favier, V., Gallée, H., Fettweis, X., Agosta, C. & Jomelli, V. 2019. Regional modeling of surface mass balance on the Cook Ice Cap, Kerguelen Islands (49°S, 69°E). Climate Dynamics, 53, 10.1007/s00382-019-04904-z.CrossRefGoogle Scholar
Verfaillie, D., Favier, V., Dumont, M., Jomelli, V., Gilbert, A., Brunstein, D., et al. 2015. Recent glacier decline in the Kerguelen Islands (49°S, 69°E) derived from modeling, field observations, and satellite data. Journal of Geophysical Research - Earth Surface, 120, 10.1002/2014JF003329.CrossRefGoogle Scholar
Vincent, C., Wagnon, P., Shea, J.M., Immerzeel, W.W., Kraaijenbrink, P., Shrestha, D., et al. 2016. Reduced melt on debris-covered glaciers: investigations from Changri Nup Glacier, Nepal. The Cryosphere, 10, 10.5194/tc-10-1845-2016.CrossRefGoogle Scholar
WAIS Divide Project Members. 2013. Onset of deglacial warming in West Antarctica driven by local orbital forcing. Nature, 500, 10.1038/nature12376.Google Scholar

Charton et al. supplementary material

Charton et al. supplementary material

[Opens in a new window]
PDF 382 KB

Altmetric attention score


Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 4
Total number of PDF views: 25 *
View data table for this chart

* Views captured on Cambridge Core between 04th November 2020 - 1st December 2020. This data will be updated every 24 hours.

Hostname: page-component-79f79cbf67-nqzjh Total loading time: 0.723 Render date: 2020-12-01T18:23:50.122Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Tue Dec 01 2020 18:05:57 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A debris-covered glacier at Kerguelen (49°S, 69°E) over the past 15 000 years
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A debris-covered glacier at Kerguelen (49°S, 69°E) over the past 15 000 years
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A debris-covered glacier at Kerguelen (49°S, 69°E) over the past 15 000 years
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *