Skip to main content
×
×
Home

Effects of temperature on heat-shock responses and survival of two species of marine invertebrates from sub-Antarctic Marion Island

  • S. Clusella-Trullas (a1), L. Boardman (a2), K.T. Faulkner (a1), L.S. Peck (a3) and S.L. Chown (a4)...
Abstract

This study examined high temperature survival and heat shock protein 70 (Hsp70) responses to temperature variation for two marine invertebrate species on sub-Antarctic Marion Island. The isopod Exosphaeroma gigas Leach and the amphipod Hyale hirtipalma Dana had the same tolerance to high temperature. The mean upper temperature which was lethal for 50% of the population (upper lethal temperature, ULT50) was 26.4°C for both species. However, the isopod E. gigas showed significant plasticity of ULT50, with a positive response to acclimation. In addition, the isopod had a heat shock response of Hsp70 at all acclimations, and the amount of Hsp70 protein increased significantly from basal levels upon an acute warm exposure after a cold acclimation. By contrast, the amphipod H. hirtipalma showed limited plasticity of ULT50 and no evidence for a heat shock response (failure of three different Hsp70 antibodies to bind to the extracted 70kDa proteins). Overall, these results reflect different flexibility of thermal tolerance of intertidal invertebrate species on Marion Island, with possible variation in the underlying cellular mechanisms, suggesting that warming associated with climate change may result in changes in species assemblage structure in sub-polar environments.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effects of temperature on heat-shock responses and survival of two species of marine invertebrates from sub-Antarctic Marion Island
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effects of temperature on heat-shock responses and survival of two species of marine invertebrates from sub-Antarctic Marion Island
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effects of temperature on heat-shock responses and survival of two species of marine invertebrates from sub-Antarctic Marion Island
      Available formats
      ×
Copyright
Corresponding author
sct333@sun.ac.za
References
Hide All
Angilletta, M.J. Jr, 2009. Thermal adaptation: a theoretical and empirical synthesis. New York: Oxford University Press, 320 pp.
Barua, D. Heckathorn, S.A. 2004. Acclimation of the temperature set-points of the heat shock response. Journal of Thermal Biology, 29, 185193.
Bedulina, D.S., Evgen'ev, M.B., Timofeyev, M.A., Protopopova, M.V., Garbuz, D.G., Pavlichenko, V.V., Luckenbach, T., Shatilina, Z.M., Axenov-Gribanov, D.V., Gurkov, A.N., Sokolova, I.M. Zatsepina, O.G. 2013. Expression patterns and organization of the hsp70 genes correlate with thermotolerance in two congener endemic amphipod species (Eulimnogammarus cyaneus and E. verrucosus) from Lake Baikal. Molecular Ecology, 22, 14161430.
Branch, M.L., Griffiths, C.L., Kensley, B. Sieg, J. 1991. The benthic Crustacea of sub-Antarctic Marion and Prince Edward Islands: illustrated keys to the species and results of the 1982–1989 University of Cape Town surveys. South African Journal of Antarctic Research, 21, 344.
Buckley, B.A., Owen, M.-E. Hofmann, G.E. 2001. Adjusting the thermostat: the threshold induction temperature for the heat-shock response in intertidal mussels (genus Mytilus) changes as a function of thermal history. The Journal of Experimental Biology, 204, 35713579.
Chapple, J.P., Smerdon, G.R., Berry, R.J. Hawkins, A.J.S. 1998. Seasonal changes in stress-70 protein levels reflect thermal tolerance in the marine bivalve Mytilus edulis L. Journal of Experimental Marine Biology and Ecology, 229, 5368.
Clark, M.S., Fraser, K.P.P. Peck, L.S. 2008a. Antarctic marine molluscs do have an Hsp70 heat shock response. Cell Stress and Chaperones, 13, 3949.
Clark, M.S., Fraser, K.P.P. Peck, L.S. 2008b. Lack of an HSP70 heat shock response in two Antarctic marine invertebrates. Polar Biology, 31, 10591065.
Claussen, D.L. 1980. Thermal acclimation in the crayfish, Orconectes rusticus and O. virilis . Comparative Biochemistry and Physiology, 66A, 377384.
Davenport, J. Davenport, J.L. 2005. Effects of shore height, wave exposure and geographical distance on thermal niche width of intertidal fauna. Marine Ecology Progress Series, 292, 4150.
Davenport, J. MacAlister, H. 1996. Environmental conditions and physiological tolerances of intertidal fauna in relation to shore zonation at Husvik, South Georgia. Journal of Marine Biological Association of the United Kingdom, 76, 9851002.
De Villiers, A.F. 1976. Littoral ecology of Marion and Prince Edward Islands (Southern Ocean). South African Journal of Antarctic Research, 1, 140.
Deere, J.A. Chown, S.L. 2006. Testing the beneficial acclimation hypothesis and its alternatives for locomotor performance. American Naturalist, 168, 630644.
Deere, J.A., Sinclair, B.J., Marshall, D.J. Chown, S.L. 2006. Phenotypic plasticity of thermal tolerances in five oribatid mite species from sub-Antarctic Marion Island. Journal of Insect Physiology, 52, 693700.
Deutsch, C.A., Tewksbury, J.J., Huey, R.B., Sheldon, K.S., Ghalambor, C.K., Haak, D.C. Martin, P.R. 2008. Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences of the United States of America, 105, 66686672.
Dong, Y., Miller, L.P., Sanders, J.G. Somero, G.N. 2008. Heat-shock protein 70 (Hsp70) expression in four limpets of the Genus Lottia: interspecific variation in constitutive and inducible synthesis correlates with in situ exposure to heat stress. The Biological Bulletin, 215, 173181.
Ferreira, T. Rasband, W. 2011. The ImageJ user guide. http://imagej.nih.gov/ij/docs/guide/, accessed October 2011.
Fraser, C.I., Nikula, R. Waters, J.M. 2011. Oceanic rafting by a coastal community. Proceedings of the Royal Society, B278, 649655.
Gabriel, W. Lynch, M. 1992. The selective advantage of reaction norms for environmental tolerance. Journal of Evolutionary Biology, 5, 4159.
Gaston, K.J. Spicer, J.I. 1998. Do upper thermal tolerances differ in geographically separated populations of the beachflea Orchestia gammarellus (Crustacea: Amphipoda)? Journal of Experimental Marine Biology and Ecology, 229, 265276.
Karl, I., Sørensen, J.G., Loeschcke, V. Fischer, K. 2009. HSP70 expression in the Copper butterfly Lycaena tityrus across altitudes and temperatures. Journal of Evolutionary Biology, 22, 172178.
Kelly, M.W., Sanford, E. Grosberg, R.K. 2011. Limited potential for adaptation to climate change in a broadly distributed marine crustacean. Proceedings of the Royal Society, B279, 349356.
Kivivuori, L. Lagerspetz, K.Y.H. 1990. Thermal resistance and behaviour of the isopod Saduria entomon (L.). Annales Zoologici Fennici, 27, 287290.
La Terza, A., Papa, G., Miceli, C. Luporini, P. 2001. Divergence between two Antarctic species of the ciliate Euplotes, E. focardii and E. nobilii, in the expression of heat-shock protein 70 genes. Molecular Ecology, 10, 10611067.
Le Roux, P.C. McGeoch, M.A. 2008. Changes in climate extremes, variability and signature on sub-Antarctic Marion Island. Climatic Change, 86, 309329.
Mélice, J-L., Lutjeharms, J.R.E., Rouault, M. Ansorge, I.J. 2003. Sea-surface temperatures at the sub-Antarctic islands Marion and Gough during the past 50 years. South African Journal of Science, 99, 363366.
Morritt, D. Ingólfsson, A. 2000. Upper thermal tolerance of the beachflea Orchestia gammarellus (Pallas) (Crustacea: Amphipoda: Talitridae) associated with hot springs in Iceland. Journal of Experimental Marine Biology and Ecology, 255, 215227.
Nikula, R., Fraser, C.I., Spencer, H.G. Walters, J.M. 2010. Circumpolar dispersal by rafting in two sub-Antarctic kelp-dwelling crustaceans. Marine Ecology Progress Series, 405, 221230.
Osovitz, C.J. Hofmann, G.E. 2005. Thermal history-dependent expression of the hsp gene in purple sea urchins: biogeographic patterns and the effect of temperature acclimation. Journal of Experimental Marine Biology and Ecology, 327, 134143.
Peck, L.S., Convey, P. Barnes, K.A. 2006. Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biological Reviews, 81, 75109.
Peck, L.S., Morley, S.A. Clark, M.S. 2010. Poor acclimation capacities in Antarctic marine ectotherms. Marine Biology, 157, 20512059.
Roberts, D.A., Hofmann, G.E. Somero, G.N. 1997. Heat-shock protein expression in Mytilus californianus: acclimatization (seasonal and tidal-height comparisons) and acclimation effects. The Biological Bulletin, 192, 309320.
Romero-Calvo, I., Ocón, B., Martínez-Moya, P., Suárez, M.D., Zarzuelo, A., Martínez-Augustin, O. De Medina, F.S. 2010. Reversible Ponceau staining as a loading control alternative to actin in Western blots. Analytical Biochemistry, 401, 318320.
Rouault, M., Mélice, J-L., Reason, C.J.C. Lutjeharms, J.R.E. 2005. Climate variability at Marion Island, Southern Ocean, since 1960. Journal of Geophysical Research, 10.1029/2004JC002492.
Sinclair, E.L.E., Thompson, M.B. Seebacher, F. 2006. Phenotypic flexibility in the metabolic response of the limpet Cellana tramoserica to thermally different microhabitats. Journal of Experimental Marine Biology and Ecology, 335, 131141.
Sørensen, J.G., Loeschcke, V. Kristensen, T.N. 2013. Cellular damage as induced by high temperature is dependent on the rate of temperature change - investigating consequences of ramping rates on molecular and organismal phenotypes in Drosophila melanogaster Meigen 1830. Journal of Experimental Biology, 216, 809814.
Stillman, J.H. 2003. Acclimation capacity underlies susceptibility to climate change. Science, 301, 65.
Stillman, J.H. Somero, G.N. 2000. A comparative analysis of the upper thermal tolerance limits of Eastern Pacific porcelain crabs, Genus Petrolisthes: influences of latitude, vertical zonation, acclimation and phylogeny. Physiological and Biochemical Zoology, 73, 200208.
Tomanek, L. 2010. Variation in heat shock response and its implication for predicting the effect of global climate change on species’ biogeographical distribution ranges and metabolic costs. Journal of Experimental Biology, 213, 971979.
Tomanek, L. Somero, G.N. 1999. Evolutionary and acclimation-induced variation in the heat-shock responses of congeneric marine snails (Genus Tegula) from different thermal habitats: implications for limits of thermaotolerance and biogeography. Journal of Experimental Biology, 202, 29252936.
Tomanek, L. Somero, G.N. 2002. Interspecific- and acclimation-induced variation in levels of heat-shock proteins 70 (hsp70) and 90 (hsp90) and heat-shock transcription factor-1 (HSF1) in congeneric marine snails (genus Tegula): implications for regulation of hsp gene expression. Journal of Experimental Biology, 205, 677685.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Antarctic Science
  • ISSN: 0954-1020
  • EISSN: 1365-2079
  • URL: /core/journals/antarctic-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score