Skip to main content Accessibility help
×
×
Home

Rapid decrease in total magnetic field F at Antarctic stations - its relationship to core–mantle features

  • Girija Rajaram (a1), T. Arun (a1), Ajay Dhar (a1) and A.G. Patil (a1)
Abstract

The Indian Institute of Geomagnetism (IIG) in 1982, 1986, and 1996, operated a Proton Precession Magnetometer (PPM) at its Antarctic stations Dakshin Gangotri/Maitri (located at ∼70°S, ∼12°E). Comparison of the average quiet-time value of total intensity F for these years with values of F obtained at the same geographic location (interpolated from iso-intensity contours of F on World Magnetic Charts and IGRF Maps) for earlier years, suggested that over the last 75 years at this location, F has dropped from ∼49 000 nT in 1922, to ∼40 000 nT in 1996 i.e. ∼120 nT per year. Further inspection at nearby Antarctic stations reveals a drop of ∼108 nT yr−1 at Novolazarevskaya, ∼100 nT yr−1, at Georg Forster and ∼95 nT yr−1 at Syowa; Mawson situated still further away shows a drop of ∼72 nT yr−1, while Dumont d'Urville located very near the magnetic pole showed a drop of ∼50 nT yr−1 until 1994. A study of the observed F values over the past five decades at 23 observatories from the Antarctic and sub-Antarctic regions indicates that contours of yearly decrease in F follow a definite pattern, with maximum decrease lying in a belt encompassing Maitri. These observations are of importance in the light of modelling works at the Earth's Core–Mantle boundary pointing to two prominent regions of reverse magnetic flux (RMF) occurring beneath South America, South Africa and a large part of Antarctica, and which may merge sometime to cause reversal of the present geomagnetic field polarity. The importance of continuous monitoring of F at various locations in Antarctic and sub-Antarctic regions is brought out in this work. It is equally important to understand the cause behind this rapid decrease in F.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Antarctic Science
  • ISSN: 0954-1020
  • EISSN: 1365-2079
  • URL: /core/journals/antarctic-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed