Hostname: page-component-5db6c4db9b-v64r6 Total loading time: 0 Render date: 2023-03-25T05:57:04.850Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Middle Palaeolithic bitumen use at Umm el Tlel around 70 000 BP

Published online by Cambridge University Press:  02 January 2015

Eric Boëda
Département d'Ethnologie et de Préhistoire, CNRS, UMR 7041, ArScAn, équipe AnTET, Maison de l'Archéologie et de l'Ethnologie, Université de Paris X- Nanterre, 21 allée de l'Université, 92023 Nanterre, France (Email:;
Stéphanie Bonilauri
Département d'Ethnologie et de Préhistoire, CNRS, UMR 7041, ArScAn, équipe AnTET, Maison de l'Archéologie et de l'Ethnologie, Université de Paris X- Nanterre, 21 allée de l'Université, 92023 Nanterre, France (Email:;
Jacques Connan
Laboratoire de Biogéochimie Moléculaire, CNRS, UMR 7177, Université Louis Pasteur, 25 rue Becquerel, 67200-Strasbourg, France (Email:
Dan Jarvie
Worldwide Geochemistry, LLC, P.O. Box 789, Humble, Texas 77347, USA (Email:
Norbert Mercier
Institut de Recherche sur les Archéomatériaux, CNRS, UMR 5060, Centre de Recherche en Physique Appliquée à l'Archéologie (CRP2A), Maison de l'Archéologie, Université de Bordeaux, 33607-Pessac Cedex, France (Email:
Mark Tobey
Encana Oil & Gas, USA Inc., 370 17th St., Suite 1700, Denver, CO 80303, USA (Email:
Hélène Valladas
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPS, UMR CEA-CNRS-UVSQ, Centre des faibles Radioactivités, Laboratoire mixte CNRS-CEA, avenue de la Terrasse, 91198-Gif-sur-Yvette Cedex, France (Email:
Heba al Sakhel
Musée National de Damas, Ministère de la Culture, Direction générale des Antiquités et des Musées, Shoukry al-Qouwatly St., Damas, Syrie (Email:
Sultan Muhesen
Département d'Archéologie, Université de Damas, Damas, Syrie (Email:


The authors identify natural bitumen on stone implements dating to 70 000 BP. It is proposed that this represents residue from hafting, taking the practice back a further 30 000 years from the date previously noted and published in Nature. The bitumen was tracked to a source 40km away, using gas chromatography-mass spectrometry and carbon isotopes.

Copyright © Antiquity Publications Ltd 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Adiamec, G. & Aitken, M. J.. 1998. Dose-rate conversion factors: update. Ancient TL 16(2): 3570.Google Scholar
Aitken, M. J. 1985. Thermoluminescence dating. London: Academic Press.Google Scholar
Boëda, E. & Muhesen, S.. 1993. Umm El Tlel (El Kowm, Syrie): étude préliminaire des industries lithiques du Paléolithique moyen et supérieur, campagne 1991–1992. Cahiers de l'Euphrate 7: 4791.Google Scholar
Boëda, E., Connan, J., Dessort, D., Muhesen, S., Mercier, N., Valladas, H. & Tisnerat, N.. 1996. Bitumen as a hafting material on Middle Palaeolithic artefacts. Nature 380: 336–8.CrossRefGoogle Scholar
Boëda, E., Connan, J. & Muhesen, S.. 1998. Bitumen as hafting material on Middle Palaeolithic artefacts from the El Kowm Basin, Syria, in Akazawa, T., Aoki, K. & Bar-Yosef, O. (ed.) Neandertals and modern humans in Western Asia: 181204. New York: Plenum.Google Scholar
Boëda, E., Griggo, C. & Soriano-Noel, S. A.. 2002. Différents modes d'occupation du site d'Umm el Tlel au cours du Paléolithique moyen (El Kowm, Syrie centrale). Paléorient 27(2): 1328.CrossRefGoogle Scholar
Connan, J. & Deschesne, O.. 1996. Le bitume à Suse: collections du Musée du Louvre / Bitumen at Susa: the Louvre Museum collection. Pau & Paris: Elf Aquitaine & Réunion des Musées Nationaux.Google Scholar
Connan, J. & Nishiaki, Y.. 2003. The bituminous mixture of Tell Kosak Shamali on the Euphrates (Syria) from the Early Ubaid to the Post Ubaid: composition of mixtures and origin of bitumen, in Nishiaki, Y. & Matsutani, T. (ed.) Tell Kosak Shamali: the archaeological investigations on the Upper Euphrates, Syria, Volume 2: Chalcolithic technology and subsistence: 283306. Tokyo: University Museum & University of Tokyo.Google Scholar
Connan, J. & Carter, R.. 2007. A geochemical study of bituminous mixtures from Failaka and Umm an-Namel (Kuwait), from the Early Dilmun to the Early Islamic period. Arabian Archaeology and Epigraphy 18: 139–81.CrossRefGoogle Scholar
Connan, J., Lombard, P., Killick, R., Højlund, F., Salles, J.-F. & Khalaf, A.. 1998. The archaeological bitumens of Bahrain from the Early Dilmun period (c. 2200 BC) to the sixteenth century AD: a problemof sources and trade. Arabian Archaeology and Epigraphy 9: 141–81.CrossRefGoogle Scholar
Connan, J., Nissenbaum, A., Imbus, K., Zumberge, J. & Macko, S.. 2006. Asphalt in Iron Age excavations of the Philistine Tel Miqne-Ekron city (Israel): origin and trade routes. Organic Geochemistry 37(17): 1768–86.CrossRefGoogle Scholar
Espitalie, J. & Bordenave, M.. 1993. Rock-Eval pyrolysis, in Bordenave, M. L. (ed.) Applied petroleum geochemistry: 237–61. Paris: Technip.Google Scholar
Grünberg, J.-M. 2002. Middle Palaeolithic birch-bark pitch. Antiquity 76: 1516.CrossRefGoogle Scholar
Joron, J. L. 1974. Contribution à l'analyse des éléments en traces dans les roches et les minéraux par activation neutronique: application à la caractérisation d'objets archéologiques. Unpublished PhD dissertation, Paris-Sud University.Google Scholar
Lemoine, S. 1996. Oxydation abiotique de bitumes pétroliers en milieu naturel: aspects moléculaires et macromoléculaires. Unpublished PhD dissertation, Louis Pasteur University, Strasbourg.Google Scholar
Martinson, P.-M., Pisias, N.-G., Hays, J.-D., Imbrie, J., Moore, T. C. & Shackleton, N.-G.. 1987. Age dating and the orbital theory of the ice ages, development of a high resolution 0 to 300 000-year old chronostratigraphy. Quaternary Research 27: 129.CrossRefGoogle Scholar
Mazza, P.P.A., Martini, F., Sala, B., Magi, M., Colombini, M. P., Giachi, G., Landucci, F., Lemorini, C., Modugno, F. & Ribechini, E.. 2006. A new Palaeolithic discovery: tar-hafted stone tools in a European Mid-Pleistocene bone-bearing bed. Journal of Archaeological Science 33: 1310–8.CrossRefGoogle Scholar
Mercier, N., Valladas, H. & Valladas, G.. 1992. Observations on paleodose determination with burnt flints. Ancient TL 10: 2832.Google Scholar
Modugno, F., Ribechini, E. & Colombini, M. P.. 2006. Chemical study of triterpenoid resinous materials in archaeological findings by means of direct exposure electron ionisation mass spectrometry and gas chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry 20: 17871800.CrossRefGoogle ScholarPubMed
Prescott, J.-R. & Hutton, J.-T.. 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23: 497500.CrossRefGoogle Scholar
Riolo, J., Hussler, G., Albrecht, P. & Connan, J.. 1986. Distribution of aromatic steroids in geological samples: their evaluation as geochemical parameters. Organic Geochemistry 10: 981–90.CrossRefGoogle Scholar
Stern, B., Connan, J., Blakelock, E., Jackman, R., Coningham, R.A.E. & Heron, C.. 2007. From Susa to Anuradhapura: reconstructing aspects of trade and exchange in bitumen-coated ceramic vessels between Iran and Sri Lanka from the third to the ninth centuries AD. Archaeometry 49: 3.Google Scholar
Valladas, G. & Valladas, H.. 1982. Effet de l'irradiation alpha sur des grains de quartz. A specialist seminar on thermoluminescence dating. Physique, Archéologie, Chimie, Techniques 6: 171–8.Google Scholar
Valladas, G., Mercier, N. & Letuve, R.. 1994. A simple semi-automatic TL apparatus of new design. Ancient TL 12: 3940.Google Scholar
Valladas, H. 1992. Thermoluminescence dating of flint. Quaternary Science Reviews 11: 15.CrossRefGoogle Scholar