Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Ellery, Adam J. Simpson, Matthew J. McCue, Scott W. and Baker, Ruth E. 2012. Critical time scales for advection-diffusion-reaction processes. Physical Review E, Vol. 85, Issue. 4,

    Ellery, Adam J. Simpson, Matthew J. McCue, Scott W. and Baker, Ruth E. 2012. Moments of action provide insight into critical times for advection-diffusion-reaction processes. Physical Review E, Vol. 86, Issue. 3,



  • R. I. HICKSON (a1) (a2), S. I. BARRY (a2), H. S. SIDHU (a1) and G. N. MERCER (a1) (a2)
  • DOI:
  • Published online: 20 March 2012

There are many ways to define how long diffusive processes take, and an appropriate “critical time” is highly dependent on the specific application. In particular, we are interested in diffusive processes through multilayered materials, which have applications to a wide range of areas. Here we perform a comprehensive comparison of six critical time definitions, outlining their strengths, weaknesses, and potential applications. A further four definitions are also briefly considered. Equivalences between appropriate definitions are determined in the asymptotic limit as the number of layers becomes large. Relatively simple approximations are obtained for the critical time definitions. The approximations are more accessible than inverting the analytical solution for time, and surprisingly accurate. The key definitions, their behaviour and approximations are summarized in tables.

Corresponding author
For correspondence; e-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[6]H. L. Frisch , “The time lag in diffusion”, J. Phys. Chem. 62 (1957) 401404; doi:10.1021/j150547a018.

[7]G. L. Graff , R. E. Williford and P. E. Burrows , “Mechanisms of vapor permeation through multilayer barrier films: lag time versus equilibrium permeation”, J. Appl. Phys. 96 (2004) 18401849; doi:10.1063/1.1768610.

[9]R. I. Hickson , S. I. Barry and G. N. Mercer , “Critical times in multilayer diffusion. Part 1: Exact solutions”, Int. J. Heat Mass Tran. 52 (2009) 57765783; doi:10.1016/j.ijheatmasstransfer.2009.08.013.

[12]R. I. Hickson , S. I. Barry , G. N. Mercer and H. S. Sidhu , “Finite difference schemes for multilayer diffusion”, Math. Comput. Model. 54 (2011) 210220; doi:10.1016/j.mcm.2011.02.003.

[14]R. I. Hickson , S. I. Barry , H. S. Sidhu and G. N. Mercer , “Critical times in single-layer reaction diffusion”, Int. J. Heat Mass Tran. 54 (2011) 26422650; doi:10.1016/j.ijheatmasstransfer.2009.08.012.

[15]K. Landman and M. McGuinness , “Mean action time for diffusive processes”, J. Appl. Math. Decis. Sci. 4 (2000) 125141; doi:10.1155/S1173912600000092.

[17]A. McNabb , “Mean action times, time lags and mean first passage times for some diffusion problems”, Math. Comput. Model. 18 (1993) 123129; doi:10.1016/0895-7177(93)90221-J.

[18]A. McNabb and G. C. Wake , “Heat conduction and finite measures for transition times between steady states”, IMA J. Appl. Math. 47 (1991) 193206; doi:10.1093/imamat/47.2.193.

[19]S. Petrovskii and N. Shigesada , “Some exact solutions of a generalized Fisher equation related to the problem of biological invasion”, Math. Biosci. 172 (2001) 7394; doi:10.1016/S0025-5564(01)00068-2.

[20]R. A. Siegel , “A Laplace transform technique for calculating diffusion time lags”, J. Membr. Sci. 26 (1986) 251262; doi:10.1016/S0376-7388(00)82110-9.

[21]R. A. Siegel , “Algebraic, differential, and integral relations for membranes in series and other multilaminar media: permeabilities, solute consumption, lag times, and mean first passage times”, J. Phys. Chem. 95 (1991) 25562565; doi:10.1021/j100159a083.

[22]A. W. Thornton , T. Hilder , A. J. Hill and J. M. Hill , “Predicting gas diffusion regime within pores of different size, shape and composition”, J. Membr. Sci. 336 (2009) 101108; doi:10.1016/j.memsci.2009.03.019.

[23]W. Y. D. Yuen , “Transient temperature distribution in a multilayer medium subject to radiative surface cooling”, Appl. Math. Model. 18 (1994) 93100; doi:10.1016/0307-904X(94)90164-3.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The ANZIAM Journal
  • ISSN: 1446-1811
  • EISSN: 1446-8735
  • URL: /core/journals/anziam-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *