Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-xbgml Total loading time: 0.454 Render date: 2022-08-12T02:33:59.589Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Feature types and object categories: Is sensorimotoric knowledge different for living and nonliving things?

Published online by Cambridge University Press:  08 August 2011

CARRIE A. ANKERSTEIN*
Affiliation:
University of Sheffield and Universität des Saarlandes
ROSEMARY A. VARLEY
Affiliation:
University of Sheffield
PATRICIA E. COWELL
Affiliation:
University of Sheffield
*
ADDRESS FOR CORRESPONDENCE Carrie A. Ankerstein, Universität des Saarlandes, Fachrichtung 4.3 Anglistik, Postfach 15 11 10, Saarbrücken 66041, Germany. E-mail: c.ankerstein@mx.uni-saarland.de

Abstract

Some models of semantic memory claim that items from living and nonliving domains have different feature-type profiles. Data from feature generation and perceptual modality rating tasks were compared to evaluate this claim. Results from two living (animals, fruits/vegetables) and two nonliving (tools, vehicles) categories showed that sensorimotoric features were important in object knowledge across both domains. In addition, significant cross-domain similarities and within-domain differences indicated that feature profiles were not determined simply as a function of the living and nonliving domain distinction. The current data support a model of semantic memory rooted in perceptual and motor processes with reduced salience for the “living/nonliving” construct.

Type
Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbarotto, R., Capitani, E., & Laiacona, M. (2001). Living musical instruments and inanimate body parts? Neuropsychologia, 39, 406414.CrossRefGoogle ScholarPubMed
Barry, C., Morrison, C. M., & Ellis, A. W. (1997). Naming the Snodgrass and Vanderwart pictures: Effects of age of acquisition, frequency and name agreement. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 50, 560585.CrossRefGoogle Scholar
Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577660.Google ScholarPubMed
Borgo, F., & Shallice, T. (2001). When living things and other “sensory quality” categories behave in the same fashion: A novel category specificity effect. Neurocase, 7, 201220.CrossRefGoogle ScholarPubMed
Borgo, F., & Shallice, T. (2003). Category specificity and feature knowledge: Evidence from new sensory-quality categories. Cognitive Neuropsychology, 20, 327353.CrossRefGoogle ScholarPubMed
Boronat, C. B., Buxbaum, L. J., Coslett, H. B., Tang, K., Saffran, E. M., Kimberg, D. Y., et al. (2005). Distinctions between manipulation and function knowledge of objects: Evidence from functional magnetic resonance imaging. Cognitive Brain Research, 23, 361373.CrossRefGoogle ScholarPubMed
Capitani, E., Laiacona, M., Mahon, B., & Caramazza, A. (2003). What are the facts of semantic category-specific deficits? A critical review of the clinical evidence. Cognitive Neuropsychology, 20, 213261.CrossRefGoogle ScholarPubMed
Caramazza, A., & Shelton, J. R. (1998). Domain-specific knowledge systems in the brain: The animate–inanimate distinction. Journal of Cognitive Neuroscience, 10, 134.CrossRefGoogle ScholarPubMed
Coslett, H. B., Saffran, E. M., & Schwoebel, J. (2002). Knowledge of the human body: A distinct semantic domain. Brain and Language, 83, 114117.Google Scholar
Damasio, H., Tranel, D., Grabowski, T., Adolphs, R., & Damasio, A. (2004). Neural systems behind word and concept retrieval. Cognition, 92, 179229.CrossRefGoogle ScholarPubMed
Devlin, J. T., Gonnerman, L. M., Andersen, E., & Seidenberg, M. (1998). Category-specific semantic deficits in focal and widespread brain damage: A computational account. Journal of Cognitive Neuroscience, 10, 7794.CrossRefGoogle ScholarPubMed
Durrant-Peatfield, M. R., Tyler, L. K., Moss, H. E., & Levy, J. (1997). The distinctiveness of form and function in category structure: A connectionist model. In Proceedings of the 19th Annual Conference of the Cognitive Science Society (pp. 193198). Mahwah: Erlbaum.Google Scholar
Farah, M. J., & McClelland, J. L. (1991). A computational model of semantic memory impairment: Modality specificity and emergent category specificity. Journal of Experimental Psychology: General, 120, 339357.CrossRefGoogle ScholarPubMed
Felician, O., Ceccaldi, M., Didic, M., Thinus-Blanc, C., & Poncet, M. (2003). Pointing to body parts: A double dissociation study. Neuropsychologia, 41, 13071316.CrossRefGoogle ScholarPubMed
Filliter, J. H., McMullen, P. A., & Westwood, D. (2005). Manipulability and living/non-living category effects on object identification. Brain and Cognition, 57, 6165.CrossRefGoogle ScholarPubMed
Garrard, P., Lambon-Ralph, M. A., Hodges, J. R., & Patterson, K. (2001). Prototypicality, distinctiveness and intercorrelation: Analysis of the semantic attributes of living and nonliving concepts. Cognitive Neuropsychology, 18, 125174.CrossRefGoogle Scholar
Gonnerman, L. M., Andersen, E. S., Devlin, J. T., Kempler, D., & Seidenberg, M. (1997). Double dissociation of semantic categories in Alzheimer's disease. Brain and Language, 57, 254279.CrossRefGoogle ScholarPubMed
Harley, T. A., & Grant, F. (2004). The role of functional and perceptual attributes: Evidence from picture naming in dementia. Brain and Language, 91, 223234.CrossRefGoogle ScholarPubMed
Kraut, M. A., Moo, L. R., Segal, J. B., & Hart, J. Jr. (2002). Neural activation during an explicit categorization task: Category- or feature-specific effects? Cognitive Brain Research, 13, 213220.CrossRefGoogle ScholarPubMed
Landis, J., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159174.CrossRefGoogle ScholarPubMed
Martin, A. (1998). The organization of semantic knowledge and the origin of words in the brain. In Jablonski, N. G. & Aiello, L. C. (Eds.), The origin and diversification of language. memoirs of the California Academy of Sciences (pp. 6988). San Francisco, CA: California Academy of Sciences.Google Scholar
Martin, A., & Caramazza, A. (2003). Neuropsychological and neuroimaging perspectives on conceptual knowledge: An introduction. Cognitive Neuropsychology, 20, 195212.CrossRefGoogle Scholar
Martin, A., Haxby, J. V., Lalonde, F. M., Wiggs, C. L., & Ungerleider, L. G. (1995). Discrete cortical regions associated with knowledge of color and knowledge of action. Science, 270, 102105.CrossRefGoogle Scholar
Martin, A., Ungerleider, L. G., & Haxby, J. V. (2000). Category specificity and the brain: The sensory/motor model of semantic representations. In Gazzaniga, M. S. (Ed.), The new cognitive neurosciences (pp. 10231036). London: MIT Press.Google Scholar
McRae, K., Cree, G. S., Seidenberg, M. S., & McNorgan, C. (2005). Semantic feature production norms for a large set of living and nonliving things. Behavior Research Methods, Instruments, and Computers, 37, 547559.CrossRefGoogle ScholarPubMed
McRae, K., de Sa, V., & Seidenberg, M. (1997). On the nature and scope of featural representations of word meaning. Journal of Experimental Psychology: General, 126, 99130.CrossRefGoogle ScholarPubMed
Miceli, G., Fouch, E., Capasso, R., Shelton, J. R., Tomaiuolo, F., & Caramazza, A. (2001). The dissociation of color from form and function knowledge. Nature Neuroscience, 4, 662667.CrossRefGoogle ScholarPubMed
Morrison, C. M., Chappell, T. D., & Ellis, A. W. (1997). Age of acquisition norms for a large set of object names and their relation to adult estimates and other variables. Quarterly Journal of Experimental Psychology, 50A, 528559.CrossRefGoogle Scholar
Moscoso del Prado Martin, F., Hauk, O., & Pulvermuller, F. (2006). Category specificity in the processing of color-related and form-related words: An ERP study. NeuroImage, 29, 2937.CrossRefGoogle Scholar
Myung, J.-Y., Blumstein, S. E., & Sedivy, J. C. (2006). Playing on the typewriter, typing on the piano: Manipulation knowledge of objects. Cognition, 98, 223243.CrossRefGoogle Scholar
Naor-Raz, G., Tarr, M. J., & Kersten, D. (2003). Is color an intrinsic property of object representation? Perception, 32, 667680.CrossRefGoogle ScholarPubMed
Pillon, A., & Samson, D. (2001). On disentangling and weighting kind of semantic knowledge. Behavior and Brain Sciences, 24, 490.Google Scholar
Proverbio, A. M., Burco, F., del Zotto, M., & Zani, A. (2004). Blue piglets? Electrophysiological evidence for the primacy of shape over color in object recognition. Cognitive Brain Research, 18, 288300.CrossRefGoogle ScholarPubMed
Puce, A., & Perrett, D. (2003). Electrophysiology and brain imaging of biological motion. Philosophical Transactions of the Royal Society of London Series B—Biological Sciences, 358, 435445.CrossRefGoogle ScholarPubMed
Servos, P., Lederman, S., Wilson, D., & Gati, J. (2001). fMRI-derived cortical maps for haptic shape, texture, and hardness. Cognitive Brain Research, 12, 307313.Google ScholarPubMed
Shelton, J. R., Fouch, E., & Caramazza, A. (1998). The selective sparing of body part knowledge: A case study. Neurocase, 4, 339351.CrossRefGoogle Scholar
Siri, S., Kensinger, E. A., Cappa, S. F., Hood, K. L., & Corkin, S. (2003). Questioning the living/nonliving dichotomy: Evidence from a patient with an unusual semantic dissociation. Neuropsychology, 17, 630645.CrossRefGoogle ScholarPubMed
Snodgrass, J. G., & Vanderwart, M. (1980). A standardized set of 260 pictures: Norms for name agreement, image agreement, familiarity and visual complexity. Journal of Experimental Psychology: Human Learning and Memory, 6, 174215.Google ScholarPubMed
Suzuki, K., Yamadori, A., & Fujii, T. (1997). Category-specific comprehension deficit restricted to body parts. Neurocase, 3, 193200.CrossRefGoogle Scholar
Tyler, L. K., & Moss, H. E. (2001). Towards a distributed account of conceptual knowledge. Trends in Cognitive Science, 5, 244252.CrossRefGoogle ScholarPubMed
Tyler, L. K., Moss, H. E., Durrant-Peatfield, M. R., & Levy, J. P. (2000). Conceptual structure and the structure of concepts: A distributed account of category-specific deficits. Brain and Language, 75, 195231.CrossRefGoogle ScholarPubMed
Vanoverberghe, V., & Storms, G. (2003). Feature importance in feature generation and typicality rating. European Journal of Cognitive Psychology, 15, 118.CrossRefGoogle Scholar
Ventura, P., Morais, J., Brito-Mendes, C., & Kolinsky, R. (2005). The mental representation of living and nonliving things: Differential weighting and interactivity of sensorial and non-sensorial features. Memory, 13, 124147.CrossRefGoogle ScholarPubMed
Vinson, D. P., Vigliocco, G., Cappa, S., & Siri, S. (2003). The breakdown of semantic knowledge: Insights from a statistical model of meaning representation. Brain and Language, 86, 347365.CrossRefGoogle ScholarPubMed
Warrington, E. K., & McCarthy, R. A. (1987). Categories of knowledge: Further fractionation and attempted integration. Brain, 110, 12731296.CrossRefGoogle Scholar
Warrington, E. K., & Shallice, T. (1984). Category specific semantic impairments. Brain, 107, 829854.CrossRefGoogle ScholarPubMed
Yamadori, A., & Albert, M. L. (1973). Word category aphasia. Cortex, 9, 112125.CrossRefGoogle ScholarPubMed

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Feature types and object categories: Is sensorimotoric knowledge different for living and nonliving things?
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Feature types and object categories: Is sensorimotoric knowledge different for living and nonliving things?
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Feature types and object categories: Is sensorimotoric knowledge different for living and nonliving things?
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *