Hostname: page-component-cd4964975-8cclj Total loading time: 0 Render date: 2023-03-29T07:35:44.437Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Assessing the temporal transferability of raptor distribution models: Implications for conservation

Published online by Cambridge University Press:  07 November 2017

Departamento de Zooloxía, Xenética e Antropoloxía Física. Universidade de Santiago de Compostela, Campus Sur, 15782 Santiago de Compostela, Spain. EBX, Estación Biolóxica do Xurés, Vilameá 121, 32870 Lobios, Galicia, Spain.
Departamento de Zooloxía, Xenética e Antropoloxía Física. Universidade de Santiago de Compostela, Campus Sur, 15782 Santiago de Compostela, Spain. CIBIO/InBIO, Research Center in Biodiversity and Genetic Resources, Predictive Ecology Group, Campus Agrario de Vairão, R. Padre Armando Quintas, N° 7, 4485-661 Vairão, Portugal. CTFC-CREAF, InForest Joint Research Unit, Solsona 25280, Spain.
EBX, Estación Biolóxica do Xurés, Vilameá 121, 32870 Lobios, Galicia, Spain. GREFA, Monte del Pilar S/N, Majadahonda, Madrid 28220, Spain.
Departamento de Zooloxía, Xenética e Antropoloxía Física. Universidade de Santiago de Compostela, Campus Sur, 15782 Santiago de Compostela, Spain.
*Author for correspondence; e-mail:


The aim of this study was to assess the temporal transferability of species distribution models (SDMs) and their potential implications for bird conservation. We quantified the loss and fragmentation of Montagu’s Harrier Circus pygargus and Common Kestrel Falco tinnunculus habitats over 13 years (2001–2014) in a highly dynamic landscape in north-western Spain. For this purpose, priority habitats for the target species were modelled at four different spatial scales using an ensemble forecasting framework. To explore the temporal transferability of our ensemble predictions, the models were back-projected to the land cover conditions in 2001 and evaluated using historical occurrence data. In addition, models calibrated with historical data were projected to the land cover conditions in 2014 and evaluated using updated occurrence data. Changes in availability and connectivity of suitable habitats between both years were estimated at four spatial scales from a set of widely-used indicators. SDMs showed a good predictive accuracy but with limited temporal transferability due to changes in the species-habitat relationships between 2001 and 2014. The results showed a decrease in the avaliability of suitable habitats of 33.4% and 47.7% for Montagu’s Harrier and Common Kestrel, respectively; with the subsequent increase in their fragmentation. However, our estimates were found to be strongly dependent on the scale of analysis and model transferability. Changes in habitat availability and connectivity ranged from -48% to +54% for Montagu’s Harrier, and from +116% to +5.6% for Common Kestrel. We call for caution when using SDMs beyond the model calibration time period to guide bird conservation. This is especially important for raptors, often characterised by low population sizes and large home ranges, and particularly sensitive to unstable, highly dynamic environmental conditions. In light of these results, specific, long-standing monitoring protocols remain essential to ensure accurate modelling performance and reliable future projections.

Research Article
Copyright © BirdLife International 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Contributed equally


Aebischer, N. J., Green, R. E. and Evans, A. D. (2000) From science to recovery: four case studies of how research has been translated into conservation action in the UK. Pp. 43–54 in Aebischer, N. J., Evans, A. D., Grice, P. V. and Vickery, J. A., eds. Ecology and conservation of lowland farmland birds. Tring, UK: British Ornithologists’ Union.Google Scholar
Allen, A. P. and O’ConnorR, J R, J. (2000) Interactive effects of land use and other factors on regional bird distributions. J. Biogeogr. 27: 889900.CrossRefGoogle Scholar
Allouche, O., Tsoar, A. and Kadmon, R. (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. App. Ecol. 43: 12231232.CrossRefGoogle Scholar
Andersen, D. E. (2007) Survey techniques. Pp. 89–100 in Bird, D. and Bildstein, K., eds. Raptor research and management techniques manual. Surrey, BC, Canada: Raptor Research Foundation and Hancock House Publishers.Google Scholar
Anderson, S. H. and Gutzwiller, K. J. (1994) Habitat evaluation methods. Pp. 254–271 in Bookhout, T. A., ed. Research and management techniques for wildlife and habitats. Bethesda, MD, USA: The Wildlife Society.Google Scholar
Araújo, M. B. and New, M. (2007) Ensemble forecasting of species distributions. Trends Ecol. Evol. 22: 4247.CrossRefGoogle ScholarPubMed
Araújo, M. B., Thuiller, W., Williams, P. H. and Reginster, I. (2005) Downscaling European species atlas distributions to a finer resolution: implications for conservation planning. Global Ecol. Biogeogr. 14: 1730.CrossRefGoogle Scholar
Araujo, M. B., Pearson, R. G., Thuiller, W. Erhard, M. (2005) Validation of species–climate impact models under climate change. Glob. Change Biol. 11: 15041513.CrossRefGoogle Scholar
Arroyo, B. E., Bretagnolle, V. and Garcia, J. T. (2003) Land use, agricultural practices and conservation of Montagu’s Harrier. Pp. 449–463 in Thompson, D. B. A., Redpath, S. M., Fielding, A. H., Marquiss, M. and Galbraith, C. A., eds. Birds of prey in a changing environment. Edinburgh, UK: The Stationery Office.Google Scholar
Barbet-Massin, M., Jiguet, F., Albert, C. H. and Thuiller, W. (2012) Selecting pseudo-absences for species distribution models: How, where and how many? Methods Ecol. Evol. 3: 327338.CrossRefGoogle Scholar
BirdLife International (2004) Birds in the European Union: a status assessment. Wageningen, The Netherlands: BirdLife International.Google Scholar
Boyce, M. S., Vernier, P. R., Nielsen, S. E., Schmiegelow, F. K. A. (2002) Evaluating resource selection functions. Ecol. Model. 157: 281300.CrossRefGoogle Scholar
Brambilla, M, Gustin, M., Vitulano, S., Negri, I., Bogliani, G., Falco, R. and Celada, C. (2017) Sixty years of habitat decline: impact of land-cover changes in northern Italy on the decreasing ortolan bunting Emberiza hortulana. Reg. Environ. Chang. 17: 323333.CrossRefGoogle Scholar
Brook, B. W., Sodhi, N. S. and Bradshaw, C. J. A. (2008) Synergies among extinction drivers under global change. Trends Ecol. Evol. 23: 453460.CrossRefGoogle ScholarPubMed
Calviño-Cancela, M., Rubido-Bará, M. and Van Etten, E. J. B. (2012) Do eucalypt plantations provide habitat for native forest biodiversity? Forest Ecol. Manag. 270: 153162.CrossRefGoogle Scholar
Campbell, J. (2008) Introduction to remote sensing. London, UK: Taylor and Francis.Google Scholar
Cardador, L., Brotóns, Ll., Mougeot, F., Giralt, D. M, Bota, G., Pomarol, M. and Arroyo, B. (2015) Conservation traps and long-term species persistence in human-dominated systems. Conserv. Lett. 8: 456462.CrossRefGoogle Scholar
Chas-Amil, M. L., Touza, J. and Prestemon, J. P. (2010) Spatial distribution of human-caused forest fires in Galicia (NW Spain). Ecol. Envir. 137: 247258.Google Scholar
Cohen, J. (1960) A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20: 3746.CrossRefGoogle Scholar
Dicks, L. V., Ashpole, J. E., Dänhardt, J., James, K., Jönsson, A., Randall, N., Showler, D. A., Smith, R. K., Turpie, S., Williams, D. and Sutherland, W. J. (2013) Farmland conservation: Evidence for the effects of interventions in northern and western Europe. Exeter, UK: Pelagic Publishing.Google Scholar
Di Cola, V. D., Broennimann, O., Petitpierre, B., Breiner, F. T., D’Amen, M., Randin, C., Engler, R., Pottier, J., Pio, D., Dubuis, A., Pellissier, L., Mateo, R. G., Hordijk, W., Salamin, N. and Guisan, A. (2016) Ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography. doi: 10.1111/ecog.02671.Google Scholar
Dobrowski, S. Z., Thorne, J. H., Greenberg, J. A., Safford, H. D., Mynsberge, A. R., Crimmins, S. M. and Swanson, A. K. (2011) Modeling plant ranges over 75 years of climate change in California, USA: temporal transferability and species traits. Ecol. Monogr. 81: 241257.CrossRefGoogle Scholar
Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G. and Münkemüller, T. (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36: 2746.CrossRefGoogle Scholar
Eskildsen, A., Roux, P. C., Heikkinen, R. K., Høye, T. T., Kissling, W. D., Pöyry, J. and Luoto, M. (2013) Testing species distribution models across space and time: high latitude butterflies and recent warming. Global Ecol. Biogeogr. 22: 12931303.CrossRefGoogle Scholar
Fielding, A. H. and Bell, J. F. (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24: 3849.CrossRefGoogle Scholar
Franklin, J. and Miller, J. A. (2009) Mapping species distributions: spatial inference and prediction. New York: Cambridge University Press.Google Scholar
Freeman, E. and Moisen, G. (2008) Presence Absence: an R package for presence absence analysis. J. Stat. Softw. 23: 131.CrossRefGoogle Scholar
Guisan, A. and Zimmermann, N. E. (2000) Predictive habitat distribution models in ecology. Ecol. Model. 135: 147186.CrossRefGoogle Scholar
Guisan, A., Graham, C. H., Elith, J. and Huettmann, F. (2007) Sensitivity of predictive species distribution models to change in grain size. Divers. Distrib. 13: 332340.CrossRefGoogle Scholar
Guisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis-Lewis, I., Sutcliffe, P. R., Tulloch, A. I. and Martin, T. G. (2013) Predicting species distributions for conservation decisions. Ecol. Lett. 16: 14241435.CrossRefGoogle ScholarPubMed
Kharouba, H. M., Algar, A. C. and Kerr, J. T. (2009) Historically calibrated predictions of butterfly species range shift using global change as a pseudo-experiment. Ecology 90: 22132222.CrossRefGoogle ScholarPubMed
Laiolo, P., Dondero, F., Ciliento, E. and Rolando, A. (2004) Consequences of pastoral abandonment for the structure and diversity of the alpine avifauna. J. App. Ecol. 41: 294304.CrossRefGoogle Scholar
López-Bao, J. V., Sazatornil, V., Llaneza, L. and Rodríguez, A. (2013) Indirect effects on heathland conservation and wolf persistence of contradictory policies that threaten traditional free-ranging horse husbandry. Conserv. Lett. 6: 448455.CrossRefGoogle Scholar
MAGRAMA (2014) Estadísticas de incendios forestales. Retrieved June 12, 2014 from – Scholar
Mantyka-Pringle, C. S., Martin, T. G. and Rhodes, J. R. (2012) Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Glob. Chang. Biol. 18: 12391252.CrossRefGoogle Scholar
Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K. and Thuiller, W. (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 15: 5969.CrossRefGoogle Scholar
Martínez Padilla, J. (2003) Cernícalo vulgar, Falco tinnunculus. Pp. 184–185 in Martí, R. and del Moral, J. C., eds. Atlas de las aves reproductoras de España. Madrid, Spain: Dirección General de Conservación de la Naturaleza-Sociedad Española de Ornitología.Google Scholar
Morán-Ordoñez, A. (2013) Modelado espacio-temporal de los servicios que proporciona la biodiversidad en los matorrales de la Cordillera Cantábrica (NO España). Efectos de los cambios socioeconómicos a varias escalas. Ecosistemas 22: 124127.CrossRefGoogle Scholar
Morán-Ordóñez, A., Suárez-Seoane, S., Elith, J., Calvo, L. and de Luis, E. (2012) Satellite surface reflectance improves habitat distribution mapping: a case study on heath and shrub formations in the Cantabrian Mountains (NW Spain). Divers. Distrib. 18: 588602.CrossRefGoogle Scholar
Newbold, T., Hudson, L. N., Hill, S. L. L., Contu, S., Lysenko, I., Senior, R. A., Börger, L., Bennett, D. J., Choimes, A., Collen, B., Day, J., De Palma, A., Díaz, S., Echeverria-Londoño, S., Edgar, M. J., Feldman, A., Garon, M., Harrison, M. L. K., Alhusseini, T., Ingram, D. J., Itescu, Y., Kattge, J., Kemp, V., Kirkpatrick, L., Kleyer, M., Laginha, D., Martin, C. D., Meiri, S., Novosolov, M., Pan, Y., Phillips, H. R. P., Purves, D. W., Robinson, A., Simpson, J., Tuck, S. L., Weiher, E., White, H. J., Ewers, R. M., Mace, G. M., Scharlemann, J. P. W. and Purvis, A. (2015) Global effects of land use on local terrestrial biodiversity. Nature 520: 4550.CrossRefGoogle ScholarPubMed
Pearson, R. G., Raxworthy, C. J., Nakamura, M. and Townsend, A. (2007) Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 34: 102117.CrossRefGoogle Scholar
PECBMS (2011) Population trends of common European breeding birds 2011. Prague: CSO.Google Scholar
Pettorelli, N., Safi, K. and Turner, W. (2014) Satellite remote sensing, biodiversity research and conservation of the future. Phil. Trans. R. Soc. B. 369: 20130191.CrossRefGoogle Scholar
Phillips, S. J., Dudík, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J. and Ferrier, S. (2009) Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19: 181197.CrossRefGoogle ScholarPubMed
Pinilla, J. (2015) Repercusiones de la transformación de un paisaje agrario: El caso del aguilucho cenizo en Tierra de Barros. XIII Congreso de Aguiluchos ibéricos. Valsaín: GREFA & AMUS.Google Scholar
Ramil-Rego, P., Rodríguez-Guitián, M. A., López Castro, H., Ferreiro da Costa, J. and Muñoz Sobrino, C. (2013) Loss of European dry heaths in NW Spain: A case study. Diversity 5: 557580.CrossRefGoogle Scholar
Randin, C. F., Dirnbock, T., Dullinger, S., Zimmerman, N. E., Zappa, M. and Guisan, A. (2006) Are niche-based species distribution models transferable in space? J. Biogeogr. 33: 16891703.CrossRefGoogle Scholar
Rapacciuolo, G., Roy, D. B., Gillings, S., Purvis, A. (2014) Temporal validation plots: quantifying how well correlative species distribution models predict species’ range changes over time. Meth. Ecol. Evol. 5: 407420.CrossRefGoogle Scholar
Regos, A., D’Amen, M., Herrando, S., Guisan, A. and Brotons, L. (2015) Fire management, climate change and their interacting effects on birds in complex Mediterranean landscapes: dynamic distribution model- ling of an early-successional species—the near-threatened Dartford Warbler (Sylvia undata). J. Ornithol. 156: 275286.CrossRefGoogle Scholar
Regos, A., Domínguez, J., Gil-Tena, A., Brotons, L., Ninyerola, M. and Pons, X. (2016) Rural abandoned landscapes and bird assemblages: winners and losers in the rewilding of a marginal mountain area (NW Spain). Reg. Environ. Change. 16: 199211.CrossRefGoogle Scholar
Richards, J. A. and Jia, X. (2006) Remote sensing digital image analysis: An introduction. Fourth edition. Berlin: Springer-Verlag.Google Scholar
Rodríguez-Guitián, M. and Ramil Rego, P. (2007) Clasificaciones climáticas aplicadas a Galicia: revisión desde una perspectiva biogeográfica. Recursos Rurais 3: 3153.Google Scholar
Rodríguez-Lado, L. and Tapia, L. (2012) Suitable breeding habitat for Golden Eagle (Aquila chrysaëtos) in a border of distribution area in northwestern Spain: advantages of using remote sensing information vs land use maps. Vie Milieu 62: 7785.Google Scholar
Rodríguez-Lado, L. and Martínez-Cortizas, A. (2015) Modelling and mapping organic carbon content of topsoils in an Atlantic area of southwestern Europe (Galicia, NW-Spain). Geoderma 245: 6573.CrossRefGoogle Scholar
Rodríguez-Lado, L., Tapia del Río, L., Pérez, M., Taboada, T., Martínez-Cortizas, A. and Macías, F. (2016) Atlas digital de propiedades de suelos de Galicia. Santiago, Spain: Univ. Santiago de Compostela.Google Scholar
Santana, J., Reino, L., Stoate, C., Borralho, R., Rio Carvalho, C., Schindle, S., Moreira, F., Bugalho, M. N., Ribeiro, P. F., Lima Santos, J., Vaz, A., Morgado, R., Porto, M. and Beja, P. (2014) Mixed effects of long-term conservation investment in Natura 2000 farmland. Conserv. Lett. 7: 467477.CrossRefGoogle Scholar
Santangeli, A., Di Minin, E. and Arroyo, B. (2014) Bridging the research implementation gap-Identifying cost-effective protection measures for Montagu’s harrier nests in Spanish farmlands. Biol. Conserv. 177: 126133.CrossRefGoogle Scholar
Schumaker, N. H. (1996) Using landscape indices to predict habitat connectivity using landscape indices to predict habitat conectivity. Ecology 77: 12101225.CrossRefGoogle Scholar
SEO/Birdlife (2010) Estado de conservación de las aves de España en 2010. Madrid, Spain: SEO/Birdlife.Google Scholar
SEO/Birdlife (2014) Programas de seguimiento de SEO/Birdlife 2014. Madrid, Spain: SEO/Birdlife.Google Scholar
Strauss, B. and Biedermann, R. (2007) Evaluating temporal and spatial generality: How valid are species–habitat relationship models? Ecol. Model. 204: 104114.CrossRefGoogle Scholar
Tapia, L., Domínguez, J. and Rodríguez, J. (2004) Modelling habitat use and distribution of Hen harrier (Circus cyaneus) and Montagu´s harrier (Circus pygargus) in a mountainous area in Galicia (NW-Spain). J. Raptor Res. 38: 133144.Google Scholar
Tapia, L., Domínguez, J. and Rodríguez, J. (2008) Hunting habitat preferences of raptors in a mountainous area (Northwestern Spain). Pol. J. Ecol. 56: 323333.Google Scholar
Tapia, L., Gil-Carrera, A. and Vázquez-Pumariño, X. (2015) Decline of Montagu’s Harrier (Circus pygargus) population in Galicia (Northwestern Spain). Wingspan 24: 17.Google Scholar
Tapia, L., Regos, A., Gil-Carrera, A. and Domínguez, J. (2017) Unravelling the response of diurnal raptors to land use change in a highly dynamic landscape in northwestern Spain: an approach based on satellite earth observation data. Eur. J. Wildl. Res. 63: 40.CrossRefGoogle Scholar
Thuiller, W., Lafourcade, B., Engler, R. and Araújo, M. B. (2009) BIOMOD - a platform for ensemble forecasting of species distributions. Ecography 32: 369373.CrossRefGoogle Scholar
Thuiller, W., Pironon, S., Psomas, A., Barbet-Massin, M., Jiguet, F., Lavergne, S., Pearman, P. B., Renaud, J., Zupan, L. and Zimmermann, N. E. (2014) The European functional tree of bird life in the face of global change. Nat. Commun. 5: 3118.CrossRefGoogle ScholarPubMed
Torres-Orozco, D., Arroyo, B., Pomarol, M. and Santangeli, A. (2016) From a conservation trap to a conservation solution: lessons from an intensively managed Montagu’s harrier population. Anim. Conserv. 19: 436443.CrossRefGoogle Scholar
Uezu, A. and Metzger, J. P. (2016) Time-Lag in Responses of Birds to Atlantic Forest Fragmentation: Restoration Opportunity and Urgency. PLOS One 11: e0147909. DOI: 10.1371/journal.pone.0147909.CrossRefGoogle ScholarPubMed
Vazquez de la Cueva, A., García del Barrio, J. M., Ortega Quero, M. and Sánchez, O. (2006) Recent fire regime in peninsular Spain in relation to forest potential productivity and population density. Int. J. Wildland Fire. 13: 663676.Google Scholar
Vázquez-Pumariño, X. (2014). Melanismo en Circus pygargus (Linnaeus, 1758): correlación con factores ambientais a distintas escalas espaciais. Traballo de Máster. Universidade de Santiago de Compostela.Google Scholar
Vázquez-Pumariño, X. (2016) A tartaraña cincenta en Galicia entre 2008 e 2016: cara o colapso poboacional? IX Congreso Galego de Ornitoloxía, Pontevedra, Sociedade Galega de Ornitoloxía.Google Scholar
Villero, D., Pla, M., Camps, D., Ruiz-Olmo, J. and Brotons, L. (2016) Integrating species distribution modelling into decision-making to inform conservation actions. Biodivers. Conserv. 121. doi: 10.1007/s10531-016-1243-2.Google Scholar
Wenger, S. J. and Olden, J. D. (2012). Assessing transferability of ecological models: an underappreciated aspect of statistical validation. Meth. Ecol. Evol. 3: 260267.CrossRefGoogle Scholar
Wiącek, J. (2015) Long-term changes of breeding success in Montagu’s Harrier Circus pygargus. Belg. J. Zool. 145: 103114.Google Scholar
WWF (2014) Living Planet Report 2014: Species and spaces, people and places (eds McLellan, R, Iyengar, L, Jeffries, B, Oerlemans, N). Gland, Switzerland: WWF International.Google Scholar
Supplementary material: PDF

Tapia et al supplementary material

Tapia et al supplementary material 1

Download Tapia et al supplementary material(PDF)