Skip to main content Accessibility help
Hostname: page-component-684899dbb8-p6h7k Total loading time: 0.608 Render date: 2022-05-22T17:48:10.585Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Atlas data indicate forest dependent bird species declines in South Africa

Published online by Cambridge University Press:  05 January 2017

Department of Botany and Zoology, University of Stellenbosch, Matieland 7602, South Africa.
Department of Environmental Affairs, Private Bag X447, Pretoria 0001, South Africa.
Department of Botany and Zoology, University of Stellenbosch, Matieland 7602, South Africa.
*Author for correspondence; e-mail:


Forest ecosystems in South Africa are at risk from a variety of anthropogenic threats impacting the faunal species dependent on them. These impacts often differ depending on species-specific characteristics. Range data on forest dependent bird species from the South African Bird Atlas Project (SABAP1 and SABAP2) were analysed to determine links between deforestation, species characteristics and range declines. Half of the species studied were found to have declining ranges. Range change data for these species were correlated with data on changes in land cover from 1990 to 2014. To determine which land cover changes affect extinction, occupancy was modelled for 30 sites across South Africa which experienced a loss of more than 10 species. Most species lost were birds of prey or insectivores. Indigenous forest decreased in 17% (n = 5) sites, while plantations/woodlots decreased in 60% (n = 18) sites. Occupancy modelling showed extinction to be mitigated by plantations in 6/28 species, and forest expansion mitigated extinction in 7/28 species. Responses to deforestation did not appear to be related to particular species characteristics. Half of South Africa’s forest-dependent bird species have declining ranges, with the loss of these species most prominent in the Eastern Cape province. Four responses to changes in forest and plantation cover are discussed: direct effects, with forest loss causing species loss; matrix effects, where plantation loss resulted in species loss; degradation of indigenous forest; and the advent of new forest arising from woody thickening caused by carbon fertilisation, which may not result in optimal habitat for forest-dependent birds.

Research Article
Copyright © BirdLife International 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Acocks, J. P. H. (1953) Veld types of South Africa. Pretoria, South Africa: The Government Printer.Google Scholar
Adie, H. and Lawes, M. J. (2011) Podocarps in Africa: temperate zone relics or rainforest survivors? Smithsonian Contrib. Bot. 95: 79100.CrossRefGoogle Scholar
Allan, D. G., Harrison, J. A., Navarro, R. A., van Wilgen, B. W. and Thompson, M. W. (1997) The impact of commercial afforestation on bird populations in Mpumalanga province, South Africa – Insights from Bird-Atlas data. Biol. Conserv. 79: 173185.CrossRefGoogle Scholar
Anderson, M. D. (2000) Raptor conservation in the Northern Cape Province, South Africa. Ostrich 71: 2532.CrossRefGoogle Scholar
Armstrong, A. J. and van Hensburgen, H. J. (1995) Effects of afforestation and clear felling on birds and small mammals at Grootvadersbosch, South Africa. Suid-Afrikaanse Bosboutydskrif 174: 1721.Google Scholar
Asibey, E. O. A. (1974) Wildlife as a source of protein in Africa south of the Sahara. Biol. Conserv. 6: 3239.CrossRefGoogle Scholar
Azpiroz, A. B., Isahhc, J. P., Dias, R. A., Di Giacomo, A. S., Fontana, C. S. and Palarea, C. M. (2012) Ecology and conservation of grassland birds in southeastern South America: a review. J. Field Ornithol. 83: 217246.CrossRefGoogle Scholar
Basheer, M. and Aarif, K. M. (2013) Birds associated with the coconut palm Cocos nucifera in an agroecosystem in the Western Ghats region of Kerala, southern India. Podoces 8: 1921.Google Scholar
Benton, T. G., Bryant, D. M., Cole, L. and Crick, H. Q. P. (2002) Linking agriculture practice to insect and bird populations: a historical study over three decades. J. Appl. Ecol. 39: 673687.CrossRefGoogle Scholar
Bereczki, K., Ódor, P., Csóka, G., Mag, Z. and Báldi, A. (2014) Effects of forest heterogeneity on the efficiency of caterpillar control service provided by birds in temperate oak forests. Forest Ecol. Manage. 327: 96105.CrossRefGoogle Scholar
Berens, D. G., Chama, L., Albrecht, J. and Farwig, N. (2014) High conservation value of forest fragments for plant and frugivore communities in a fragmented forest landscape in South Africa. Biotropica 46: 350356.CrossRefGoogle Scholar
Berliner, D. D. (2009) Systematic conservation planning for South Africa’s forest biome: An assessment of the conservation status of South Africa’s forests and recommendations for their conservation. Doctoral thesis, University of Cape Town.
Biggs, R., Reyers, B. and Scholes, R. J. (2006) A biodiversity intactness score for South Africa. South African J. Sci. 102: 277283.Google Scholar
BirdLife International (2013) Endemic Bird Area factsheet: South African forests. Downloaded from on 19/09/2013.
BirdLife International (2014a) IUCN Red List for birds. Downloaded from on 17/01/2014.
BirdLife International (2014b) BirdLife Data Zone. Downloaded from on 17/01/2014.
BirdLife South Africa (2014) South African threatened species list. Downloaded from on 3/11/2014.
Bleher, B., Potgieter, C. J., Johnson, D. N. and Katrin, B-G. (2003) The importance of figs for frugivores in a South African coastal forest. J. Trop. Ecol. 19: 375386.CrossRefGoogle Scholar
Bremer, L. L. and Farley, K. A. (2010) Does plantation forestry restore biodiversity or create green deserts? A synthesis of the effects of land-use transitions on plant species richness. Biodivers. Conserv. 19: 38933915.CrossRefGoogle Scholar
Buitenwerf, R., Bond, W. J., Stevens, N. and Trollope, W. S. W. (2012) Increased tree densities in South African savannas: >50 years of data suggests CO2 as a driver. Global Change Biol. 18: 675684.CrossRefGoogle Scholar
Carter, S. P. and Bright, P. W. (2002) Habitat refuges as alternatives to predator control for the conservation of endangered Mauritian birds. Pp. 7178 in Veitch, C. R. and Clout, M. N., eds. Turning the tide: the eradication of invasive species. Gland, Switzerland and Cambridge, UK: IUCN.Google Scholar
Chace, J. F. and Walsh, J. J. (2006) Urban effects on avifauna: a review. Landscape and Urban Planning 74: 4669.CrossRefGoogle Scholar
Chama, L., Berens, D. G., Downs, C. T. and Farwig, N. (2013) Do frugivores enhance germination success of plant species? An experimental approach. South Afr. J. Bot. 88: 2327.CrossRefGoogle Scholar
Cocks, M. L. and Wiersum, K. F. (2003) The significance of plant diversity to rural households in Eastern Cape province of South Africa. Forests, Trees and Livelihoods 13: 3958.CrossRefGoogle Scholar
Coetzee, B. W. T., Robertson, M. P., Erasmus, B. F. N., van Rensburg, B. J. and Thuiller, W. (2009) Ensemble models predict Important Bird Areas in southern Africa will become less effective for conserving endemic birds under climate change. Global Ecol. Biogeogr. 18: 701710.CrossRefGoogle Scholar
Cooper, K. H. (1985) The conservation status of indigenous forests in the Transvaal, Natal and O.F.S., South Africa. Durban, South Africa: Wildlife Society of South Africa.Google Scholar
Cordeiro, N. J. and Howe, H. F. (2001) Low recruitment of trees dispersed by animals in African forest fragments. Conserv. Biol. 15: 17331741.CrossRefGoogle Scholar
Cunningham, S. A. (2000) Depressed pollination in habitat fragments causes low fruit set. Proc. R. Soc. London B 267: 11491152.CrossRefGoogle ScholarPubMed
Downs, C. T. (2005) Abundance of the endangered Cape parrot, Poicephalus robustus, in South Africa: implications for its survival. Afr. Zool. 40: 1524.CrossRefGoogle Scholar
Downs, C. T., Pfeiffer, M. and Hart, L. A. (2014) Fifteen years of annual Cape Parrot Poicephalus robustus censuses: current population trends and conservation contributions. Ostrich 85: 273280.CrossRefGoogle Scholar
Du Plessis, M. A. (1995) The effects of fuelwood removal on the diversity of some cavity-using birds and mammals in South Africa. Biol. Conserv. 74: 7782.CrossRefGoogle Scholar
Duffy, J. E. (2003) Biodiversity loss, trophic skew and ecosystem functioning. Ecol. Lett. 6: 680687.CrossRefGoogle Scholar
Eeley, H. A. C., Lawes, M. J. and Piper, S. E. (1999) The influence of climate change on the distribution of indigenous forest in KwaZulu-Natal, South Africa. J. Biogeogr. 26: 595617.CrossRefGoogle Scholar
Eeley, H. A. C., Lawes, M. J. and Reyers, B. (2001) Priority areas for the conservation of subtropical indigenous forest in southern Africa: a case study from KwaZulu-Natal. Biodivers. Conserv. 10: 12211246.CrossRefGoogle Scholar
ESRI (2011) ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute.
Estades, C. F. and Temple, S. A. (1999) Deciduous-forest bird communities in a fragmented landscape dominated by exotic pine plantations. Ecol. Applic. 9: 573585.CrossRefGoogle Scholar
Ewers, R. M. and Didham, R. K. (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. 81: 117142.CrossRefGoogle ScholarPubMed
Forestry Economics Services CC (2014) Report on commercial timber resources and primary roundwood processing in South Africa 2011–2012. Pretoria, South Africa: Department of Agriculture, Forestry and Fisheries, Forestry and Natural Resources Management Branch.
Geldenhuys, C. J. (2002) Tropical secondary forest management in Africa: reality and perspectives. South Africa Country paper. Workshop paper for FAO in collaboration with ICRAF and CIFOR. Available from
Geldenhuys, C. J. and MacDevette, D. R. (1989) Conservation status of coastal and montane evergreen forest. Pp. 224238 in Huntley, B. J., ed. Biotic diversity in southern Africa. Cape Town, South Africa: Oxford University Press.Google Scholar
Geldenhuys, C. J. (1991) Distribution, size and ownership of forests in the Southern Cape. Suid-Afrikaanse Bosboutydskrif 158: 5166.Google Scholar
GeoterraImage (2014a) 1990 South African national land-cover dataset, data user report and metadata, July 2015, version 05.
GeoterraImage (2014b) 2013–2014 South African National Land-Cover Dataset, Data User Report and MetaData, February 2015, version 05.
Harebottle, D. M., Underhill, L. G. and Brooks, M. (2010) Southern African bird atlas project 2: Instruction manual. Downloaded from on 26/2/2014.
Harrison, J. A., Allan, D. G., Underhill, L. G., Herremans, M., Tree, A. J., Parker, V. and Brown, C. J. (1997) The atlas of southern African Birds. Johannesburg, South Africa; BirdLife South Africa.Google Scholar
Hines, J. E. (2006) PRESENCE2-Software to estimate patch occupancy and related parameters. Laurel, Maryland: USGS-PWRC.Google Scholar
Hinsley, S. H., Hill, R. A., Bellamy, P., Broughton, R. K., Harrison, N. M., Mackenzie, J. A., Speakman, J. R. and Ferns, P. N. (2009) Do highly modified landscapes favour generalists at the expense of specialists? An example using woodland birds. Landscape Res. 34: 509526.CrossRefGoogle Scholar
Hockey, P. A. R. and Midgley, G. F. (2009) Avian range changes and climate change: a cautionary tale from the Cape Peninsula. Ostrich 80: 2934.CrossRefGoogle Scholar
Hockey, P. A. R., Dean, W. R. J. and Ryan, P. G. (2005) Roberts’ birds of southern Africa, 7th edition. Cape Town, South Africa: John Voelcker Bird Book Fund.Google Scholar
Hockey, P. A. R., Sirami, C., Ridley, A. R., Midgley, G. F. and Babiker, H. A. (2011) Interrogating recent range changes in South African birds: confounding signals from land use and climate change present a challenge for attribution. Divers. Distrib. 17: 254261.CrossRefGoogle Scholar
Howe, H. F. and Smallwood, J. (1982) Ecology of seed dispersal. Annu. Rev. Ecol. Systemat. 13: 201228.CrossRefGoogle Scholar
IUCN (2013) IUCN Red List of Threatened Species. Version 2013.2. Downloaded from on 14/1/2014.
Kirika, J. M., Farwig, N. and Böhning-Gaese, K. (2008) Effects of local disturbance of tropical forests on frugivores and seed removal of a small-seeded Afrotropical tree. Conserv. Biol. 22: 318328.CrossRefGoogle Scholar
Kotze, D. J. and Lawes, M. J. (2007) Viability of ecological processes in small Afromontane forest patches in South Africa. Austral Ecol. 32: 294304.CrossRefGoogle Scholar
Lantschner, M. V., Rusch, V. and Peyrou, C. (2008) Bird assemblages in pine plantations replacing native ecosystems in NW Patagonia. Biodivers. Conserv. 17: 969989.CrossRefGoogle Scholar
Lawes, M. J., Midgley, J. J. and Chapman, C. A. (2004) South Africa’s forests: The ecology and sustainable use of indigenous timber resources. Pp. 3175 in Lawes, M. J., Eeley, H. A. C., Shackleton, C. M. and Geach, B. G. S., eds. Indigenous forests and woodlands in South Africa: Policy, people and practice. Scottsville, South Africa: University of KwaZulu-Natal Press.Google Scholar
Lee, A. T. K., Hockey, P. A. R., and Barnard, P. (2015) Population metrics for fynbos birds, South Africa: densities, and detection and capture rates from a Mediterranean-type ecosystem. Ostrich 86: 179187.CrossRefGoogle Scholar
Lenz, J., Fiedler, W., Caprano, T., Friedrichs, W., Gaese, B. H., Wikelski, M. and Böhning-Gaese, K. (2011) Seed dispersal distributions by trumpeter hornbills in fragmented landscapes. Proc. Roy. Soc. B 278: 22572264.CrossRefGoogle ScholarPubMed
Low, A. B. and Rebelo, A. G. (1996) Vegetation of South Africa, Lesotho and Swaziland. Pretoria, South Africa: DEAT.Google Scholar
MacDonald, I. A. W. (1989) Man’s role in changing the face of southern Africa. Pp. 51–77 in Huntley, B. J., ed. Biotic diversity in Southern Africa: Concepts and conservation. Cape Town, South Africa: Oxford University Press.Google Scholar
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, A. and Lantimm, C. A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83: 22482255.CrossRefGoogle Scholar
Martinuzzi, S., Vierling, L. A., Gould, W. A., Fallowski, M. J., Evans, J. S., Hudak, A. T. and Vierling, K. T. (2009) Mapping snags and understory shrubs for a LiDAR-based assessment of wildlife habitat suitability. Remote Sens. Environ. 113: 25332546.CrossRefGoogle Scholar
Mitra, S. S. and Sheldon, F. H. (1993) Use of an exotic tree plantation by Bornean lowland forest birds. The Auk 110: 529540.CrossRefGoogle Scholar
Mucina, L. and Rutherford, M. C. (2006) The vegetation of South Africa, Lesotho and Swaziland. Pretoria, South Africa: South African National Biodiversity Institute. (Strelitzia no. 19).Google Scholar
Oatley, T. B. (1989) Biogeography of the forest avifauna in South Africa. Pp. 4859 in Geldenhuys, C. J., ed. Biogeography of the mixed evergreen forests of southern Africa. Pretoria, South Africa: Foundation for Research Development, CSIR. (Occasional report no. 45).Google Scholar
Okes, N. C., Hockey, P. A. R., and Cumming, G. S. (2008) Habitat use and life history as predictors of bird responses to habitat change. Conserv. Biol. 22: 151162.CrossRefGoogle ScholarPubMed
Prestt, I. (1965) An enquiry into the recent breeding status of some of the smaller birds of prey and crows in Britain. Bird Study 12: 196221.CrossRefGoogle Scholar
R Core Team (2014) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. URL
Roseberry, J. L. and Klimstra, W. D. (1970) The nesting ecology and reproductive performance of the Eastern Meadowlark. Wilson Bull. 82: 243267.Google Scholar
SANBI (2009) Updating national landcover. Unpublished Report. Pretoria, South Africa: South African National Biodiversity Institute.
Schoeman, F., Newsby, T. S., Thompson, M. W. and Van den Berg, E. C. (2013) South African national land-cover change map. South Afr. J. Geomatics 2: 94105.Google Scholar
Schoener, T. W. (1968) Sizes of feeding territories among birds. Ecology 49: 123141.CrossRefGoogle Scholar
Sekercioglu, C. H. (2010) Ecosystem functions and services. Pp. 4572 in Sodhi, N. S. and Ehrlich, P. R., eds. Conservation biology for all. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Shackleton, C. and Shackleton, S. (2004) The importance of non-timber forest products in rural livelihood security and as safety nets: a review of evidence from South Africa. South Afr. J. Sci. 100: 658664.Google Scholar
Shackleton, C. M. and Shackleton, S. E. (2006) Household wealth status and natural resource use in the Kat River valley, South Africa. Ecol. Econ. 57: 306317.CrossRefGoogle Scholar
Shackleton, S. E., Shackleton, C. M., Netshiluvhi, T. R., Geach, B. S., Ballance, A. and Fairbanks, D. H. K. (2002) Use patterns and values of savanna resources in three rural villages in South Africa. Econ. Bot. 56: 130146.CrossRefGoogle Scholar
Sinclair, I., Hockey, P., Tarboton, W. and Ryan, P. (2011) Sasol birds of southern Africa. 4th edition. Cape Town, South Africa: Struik Nature.Google Scholar
Sinu, P. A. (2011) Avian pest control in tea plantations of sub-Himalayan plains of northeast India: mixed-species foraging flock matters. Biol. Control 58: 362366.CrossRefGoogle Scholar
Tarboton, W. R. (2001) A guide to the nests and eggs of southern African birds. Cape Town, South Africa: Struik Nature.Google Scholar
Trail, P. W. (2007) African hornbills: keystone species threatened by habitat loss, hunting and international trade. Ostrich 78: 609613.CrossRefGoogle Scholar
Twine, W., Moshe, D., Netshiluvhi, T. and Siphugu, V. (2003) Consumption and direct-use values of savanna bio-resources used by rural households in Mametja, a semi-arid area of Limpopo province, South Africa. South Afr. J. Sci. 99: 467473.Google Scholar
Van den Berg, E., Plarre, C., van den Berg, H. M. and Thompson, M. W. (2008) Final report for the National Land Cover 2000 Funding Consortium. ARC Project Report No. GW/A/2008/86, December 2008.
Von Maltitz, G., Mucina, L., Geldenhuys, C. J., Lawes, M. J., Eeley, H. A. C., Adie, H., Vink, D., Fleming, G. and Bailey, C. (2003) Classification system for South African indigenous forests: an objective classification for the Department of Water Affairs and Forestry. Environmentek report ENV-PC 17: 1284.Google Scholar
Wethered, R. and Lawes, M. J. (2003) Matrix effects on bird assemblages in fragmented Afromontane forests in South Africa. Biol. Conserv. 114: 327340.CrossRefGoogle Scholar
Wethered, R. and Lawes, M. J. (2005) Nestedness of bird assemblages in fragmented Afromontane forest: the effect of plantation forestry in the matrix. Biol. Conserv. 123: 125137.CrossRefGoogle Scholar
Wilson, J. D., Morris, A. J., Arroyo, B. E., Clark, S. C. and Bradbury, R. B. (1999) A review of the abundance and diversity of invertebrate and plant foods of granivorous birds in northern Europe in relation to agricultural change. Agric. Ecosyst. Environ. 75: 1330.CrossRefGoogle Scholar
Wirminghaus, J. O., Downs, C. T., Perrin, M. R. and Symes, C. T. (2001a) Abundance and activity patterns of the Cape parrot (Poicephalus robustus) in two afromontane forests in South Africa. Afr. Zool. 36: 7177.CrossRefGoogle Scholar
Wirminghaus, J. O., Downs, C. T., Symes, C. T. and Perrin, M. R. (2001b) Breeding biology of the Cape parrot Poicephalus robustus . Ostrich 72: 159164.CrossRefGoogle Scholar
Wirminghaus, J. O., Downs, C. T., Symes, C. T. and Perrin, M. R. (2002) Diet of the Cape parrot, Poicephalus robustus, in Afromontane forests in KwaZulu-Natal, South Africa. Ostrich 73: 2025.CrossRefGoogle Scholar
Supplementary material: File

Cooper supplementary material

Appendix S1-S2

Download Cooper supplementary material(File)
File 20 KB
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Atlas data indicate forest dependent bird species declines in South Africa
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Atlas data indicate forest dependent bird species declines in South Africa
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Atlas data indicate forest dependent bird species declines in South Africa
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *