Skip to main content Accessibility help
×
Home

Using camera traps to examine distribution and occupancy trends of ground-dwelling rainforest birds in north-eastern Madagascar

Published online by Cambridge University Press:  24 April 2017

ASIA J. MURPHY
Affiliation:
Virginia Tech, Department of Fish and Wildlife Conservation, Blacksburg, VA, USA.
ZACH J. FARRIS
Affiliation:
Virginia Tech, Department of Fish and Wildlife Conservation, Blacksburg, VA, USA.
SARAH KARPANTY
Affiliation:
Virginia Tech, Department of Fish and Wildlife Conservation, Blacksburg, VA, USA.
MARCELLA J. KELLY
Affiliation:
Virginia Tech, Department of Fish and Wildlife Conservation, Blacksburg, VA, USA.
KATHLEEN A. MILES
Affiliation:
Virginia Tech, Department of Fish and Wildlife Conservation, Blacksburg, VA, USA.
FÉLIX RATELOLAHY
Affiliation:
Wildlife Conservation Society Madagascar Program, Antananarivo, Madagascar.
RAYMOND P. RAHARINIAINA
Affiliation:
MAHERY (Madagascar Health and Environmental Research), Maroantsetra, Madagascar.
CHRISTOPHER D. GOLDEN
Affiliation:
MAHERY (Madagascar Health and Environmental Research), Maroantsetra, Madagascar. Harvard T. H. Chan School of Public Health, Department of Environmental Health, Boston, MA, USA.
Corresponding
E-mail address:

Summary

Camera trap surveys are a non-invasive way to monitor wildlife populations. Although most often used to study medium- and large-sized mammals, camera traps also detect non-target species. These detections provide useful ecological information on little-known species, but such data usually remain unanalysed. We used detections from camera-trapping surveys of native carnivores and small mammals to examine distribution patterns and occupancy trends of little-known ground-dwelling rainforest birds at seven sites across the Masoala-Makira protected area complex in north-eastern Madagascar. We obtained 4,083 detections of 28 bird species over 18,056 trap nights from 200 to 2013. We estimated occupancy across the Masoala-Makira protected area complex (hereafter, landscape occupancy) and annual trends in occupancy at three resurveyed sites for five commonly observed species. Landscape occupancy across Masoala-Makira ranged from 0.75 (SE 0.09; Madagascar Magpie-robin Copsychus albospecularis) to 0.25 (SE 0.06; Scaly Ground-roller Geobiastes squamiger). Ground-dwelling forest bird occupancy was similar at forest sites that ranged from intact to fully degraded; however, three species were detected less often at sites with high feral cat trap success. Nearly half of all focal species showed declines in annual occupancy probability at one resurveyed site (S02) from 2008 to 2013. The declines in ground-dwelling bird occupancy could have community-wide consequences as birds provide ecosystem services such as seed dispersal and pest regulation. We suggest immediate conservation measures—such as feral cat removal—be implemented to protect ground-dwelling forest birds and other threatened taxa across this landscape.

Type
Research Article
Copyright
Copyright © BirdLife International 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle. Pp. 267281 in Petran, B. N. and Csaki, F., eds. Second international symposium on information theory. Budapest, Hungary: Akademiai Kiado.Google Scholar
Beaudrot, L., Ahumada, J. A., O’Brien, T., Alvarez-Loayza, T., Boekee, K., Campos-Arceiz, K., Eichberg, D., Espinosa, S., Fegraus, E., Fletcher, C., Gajapersad, K., Hallam, C., Hurtado, J., Jansen, P. A., Kumar, A., Larney, E., Lima, M. G., Mahony, C., Martin, E. H., McWilliam, A., Mugerwa, B., Ndoundou-Hockemba, M., Razafimahaimodison, J. C., Romero-Saltos, H., Rovero, F., Salvador, J., Santos, F., Sheil, D., Spironello, W. R., Willig, M. R., Winarni, N. L., Zvoleff, A. and Andelman, S. J. (2016) Standardized assessment of biodiversity trends in tropical forest protected areas: The end is not in sight. PLoS Biol. 14: e1002357.CrossRefGoogle Scholar
Bradshaw, C. J. A., Sodhi, N. S. and Brook, B. W. (2009) Tropical turmoil: a biodiversity tragedy in progress. Front. Ecol. Environ. 7: 7987.CrossRefGoogle Scholar
Brooks, T. M., Mittermeier, R. A., da Fonseca, G. A., Gerlach, J., Hoffmann, M., Lamoreux, J. F., Mittermeier, C. G., Pilgrim, J. D. and Rodrigues, A. S. (2006) Global biodiversity conservation priorities. Science 313: 5861.CrossRefGoogle Scholar
Brooks, T. M., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A., Rylands, A. B., Konstant, W. R., Flick, P., Pilgrim, J., Oldfield, S., Magin, G. and Hilton-Taylor, C. (2002) Habitat loss and extinction in the hotspots of biodiversity. Conserv. Biol. 16: 909923.CrossRefGoogle Scholar
Burton, A. C., Neilson, E., Moreira, D., Ladle, A., Steenweg, R., Fisher, J. T., Bayne, E., Boutin, S. and Stephens, P. (2015) Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. J. Appl. Ecol. 52: 675685.CrossRefGoogle Scholar
Caves, E. M., Jennings, S. B., Hillerislambers, J., Tewksbury, J. J. and Rogers, H. S. (2013) Natural experiment demonstrates that bird loss leads to cessation of dispersal of native seeds from intact to degraded forests. PLoS ONE 8: e65618.CrossRefGoogle ScholarPubMed
Chapin, F. S. III, Zavaleta, E., Eviner, V. T., Naylor, R. L., Vitousek, P. M., Reynolds, H. L., Hooper, D. U., Lavorel, S., Sala, O. E., Hobbie, S. E., Mack, M. C. and Díaz, S. (2000) Consequences of changing biodiversity. Nature 405: 234242.CrossRefGoogle ScholarPubMed
Corlett, R. T. (2007) The impact of hunting on the mammalian fauna of tropical Asian forests. Biotropica 39: 292303.CrossRefGoogle Scholar
Cusack, J. J., Dickman, A. J., Rowcliffe, J. M., Carbone, C., Macdonald, D. W. and Coulson, T. (2015) Random versus game trail-based camera trap placement strategy for monitoring terrestrial mammal communities. PLoS ONE 10: e0126373.CrossRefGoogle Scholar
Davis, M. L., Kelly, M. J. and Stauffer, D. F. (2011) Carnivore co-existence and habitat use in the Mountain Pine Ridge Forest Reserve, Belize. Anim. Conserv. 14: 5665.CrossRefGoogle Scholar
Delibes-Mateos, M., Diaz-Ruiz, F. and Ferreras, P. (2014) Activity patterns of the vulnerable guina (Leopardus guigna) and its main prey in the Validivian rainforest of southern Chile. Mamm. Biol. 79: 393397.CrossRefGoogle Scholar
Di Bitetti, M. S., Paviolo, A. and De Angelo, C. (2006) Density, habitat use and activity patterns of ocelots (Leopardus pardalis) in the Atlantic Forest of Misiones, Argentina. J. Zool. 270: 153163.Google Scholar
Dillon, A. and Kelly, M. J. (2007) Ocelot Leopardus pardalis in Belize: the impact of trap spacing and distance moved on density estimates. Oryx 41: 469477.CrossRefGoogle Scholar
Erb, P. L., McShea, W. J. and Guralnick, R. P. (2012) Anthropogenic influences on macro-level mammal occupancy in the Appalachian Trail corridor. PLoS ONE 7: e42574.CrossRefGoogle ScholarPubMed
Farris, Z. J., Gerber, B. D., Karpanty, S., Murphy, A., Andrianjakarivelo, V., Ratelolahy, F. and Kelly, M. J. (2015a) When carnivores roam: temporal patterns and overlap among Madagascar’s native and exotic carnivores. J. Zool. 296: 4557.CrossRefGoogle Scholar
Farris, Z. J., Golden, C. D., Karpanty, S., Murphy, A., Stauffer, D., Ratelolahy, F., Andrianjakarivelo, V., Holmes, C. M. and Kelly, M. J. (2015b) Hunting, exotic carnivores, and habitat loss: anthropogenic effects on a native carnivore community, Madagascar. PLoS ONE 10: e0136456.CrossRefGoogle ScholarPubMed
Farris, Z. J., Kelly, M. J., Murphy, A., Karpanty, S., Ratelolahy, F., Andrianjakarivelo, V. and Holmes, C. M. (In review) The times are a changin’: multi-season surveys reveal exotics replace native carnivores at a Madagascar rainforest site. Biol. Conserv.Google Scholar
Gardner, C. J. and Davies, Z. G. (2014) Rural bushmeat consumption within multiple-use protected areas: qualitative evidence from southwest Madagascar. Hum. Ecol. 42: 2134.CrossRefGoogle Scholar
Gardner, T. A., Barlow, J., Chazdon, R., Ewers, R. M., Harvey, C. A., Peres, C. A. and Sodhi, N. S. (2009) Prospects for tropical forest biodiversity in a human-modified world. Ecol. Lett. 12: 561582.CrossRefGoogle Scholar
Gerber, B. D., Karpanty, S. M. and Randrianantenaina, J. (2012) The impact of forest logging and fragmentation on carnivore species composition, density and occupancy in Madagascar’s rainforests. Oryx 46: 414422.CrossRefGoogle Scholar
Golden, C. D. (2009) Bushmeat hunting and use in the Makira Forest, north-eastern Madagascar: a conservation and livelihoods issue. Oryx 43: 386.CrossRefGoogle Scholar
Golden, C. D., Fernald, L. C. H., Brashares, J. S., Rasolofoniaina, B. J. R. and Kremen, C. (2011) Benefits of wildlife consumption to child nutrition in a biodiversity hotspot. Proc. Natl. Acad. Sci. USA 108: 1965319656.CrossRefGoogle Scholar
Goodman, S. M. (2012) Les Carnivora de Madagascar. Antananarivo, Madagascar: Association Vahatra.Google Scholar
Goodman, S. M. and Wilmé, L. (2003) Coua spp., Couas. Pp. 11021108 in Goodman, S. M. and Benstead, J. P., eds. The natural history of Madagascar. Chicago, IL: The University of Chicago Press.Google Scholar
Hawkins, A. F. A. and Goodman, S. M. (2003) Introduction to the birds. Pp. 10191044 in Goodman, S. M. and Benstead, J. P., eds. The natural history of Madagascar. Chicago, IL: The University of Chicago Press.Google Scholar
Hines, J. E. (2006) Program PRESENCE. PWRC-USGS, http://www.mbr-pwrc.usgs.gov/software/presence.html.Google Scholar
Irwin, M. T., Wright, P. C., Birkinshaw, C., Fisher, B. L., Gardner, C. J., Glos, J., Goodman, S. M., Loiselle, P., Rabeson, P. and Raharison, J.-L. (2010) Patterns of species change in anthropogenically disturbed forests of Madagascar. Biol. Conserv. 143: 23512362.CrossRefGoogle Scholar
IUCN (2015) The IUCN Red List of threatened species. Version 2015.4. http://www.iucnredlist.org.Google Scholar
Jeganathan, P., Green, R. E., Bowden, C. G. R., Norris, K., Pain, D. and Rahmani, A. (2002) Use of tracking strips and automatic cameras for detecting Critically Endangered Jerdon’s coursers Rhinoptilus bitorquatus in scrub jungle in Andhra Pradesh, India. Oryx 36: 182188.CrossRefGoogle Scholar
Karanth, K. U., Nichols, J. D., Kumar, N. S. and Jathanna, D. (2011) Estimating demographic parameters in a tiger population from long term camera-trap data. Pp. 145162 in O’Connel, A. F., D Nichols, J. and Karanth, K. U., eds. Camera traps in animal ecology. Tokyo: Springer-Japan.CrossRefGoogle Scholar
Kerridge, F., Ralisoamalala, R., Goodman, S. M. and Pasnick, S. (2003) Fossa fossana, Malagasy striped civet, Fanaloka. Pp. 13631365 in Goodman, S. M. and Benstead, J. P., eds. The natural history of Madagascar. Chicago, IL: The University of Chicago Press.Google Scholar
Korfanta, N. M., Newmark, W. D. and Kauffman, M. J. (2012) Long-term demographic consequences of habitat fragmentation to a tropical understory bird community. Ecology 93: 25482559.CrossRefGoogle Scholar
Lambert, F. R. and Collar, N. J. (2002) The future for Sundaic lowland forest birds: long-term effects of commercial logging and fragmentation. Forktail 18: 127146.Google Scholar
Langrand, O. and Sinclair, I. (2003) Birds of the Indian Ocean islands: Madagascar, Mauritius, Reunion, Rodrigues, Seychelles and the Comoros. Cape Town, South Africa: Random House Struik.Google Scholar
Lebreton, J. D., Burnham, K. P., Clobert, J. and Anderson, D. R. (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol. Monogr. 62: 67118.CrossRefGoogle Scholar
MacKenzie, D. I. and Bailey, L. L. (2004) Assessing the fit of site-occupancy models. J. Agric. Biol. Environ. Statistics 9: 300318.CrossRefGoogle Scholar
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A. and Langtimm, C. A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83: 22482255.CrossRefGoogle Scholar
MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L. L. and Hines, L. L. (2005) Occupancy estimation and modeling: Inferring patterns and dynamics of species occurrence. Burlington, MA: Academic Press.Google Scholar
Medina, F. M., Bonnaud, E., Vidal, E., Tershy, B. R., Zavaleta, E. S., Josh Donlan, C., Keitt, B. S., Corre, M., Horwath, S. V. and Nogales, M. (2011) A global review of the impacts of invasive cats on island endangered vertebrates. Glob. Change Biol. 17: 35033510.CrossRefGoogle Scholar
Monterroso, P., Rich, L. N., Serronha, A., Ferreras, P. and Alves, P. C. (2014) Efficiency of hair snares and camera traps to survey mesocarnivore populations. Eur. J. Wildl. Res. 60: 279289.CrossRefGoogle Scholar
Morris, P. and Hawkins, F. (1998) Birds of Madagascar: a photographic guide. New Haven, USA: Yale University Press.Google Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. and Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature 403: 853858.CrossRefGoogle ScholarPubMed
Newbold, T., Hudson, L. N., Phillips, H. R., Hill, S. L., Contu, S., Lysenko, I., Blandon, A., Butchart, S. H., Booth, H. L., Day, J., De Palma, A., Harrison, M. L., Kirkpatrick, L., Pynegar, E., Robinson, A., Simpson, J., Mace, G. M., Scharlemann, J. P. and Purvis, A. (2014) A global model of the response of tropical and sub-tropical forest biodiversity to anthropogenic pressures. Proc. R. Soc. B 281: 20141371.CrossRefGoogle Scholar
O’Brien, T. G. and Kinnaird, M. G. (2008) A picture is worth a thousand words: the application of camera trapping to the study of birds. Bird Conserv. Internatn. 18: S144S162.Google Scholar
O’Connell, A. F. and Bailey, L. L. (2011) Inference for occupancy and occupancy dynamics. Pp. 191204 in O’Connell, A. F., Nichols, J. D. and Karanth, K. U., eds. Camera traps in animal ecology: Methods and analyses. Tokyo: Springer-Japan.CrossRefGoogle Scholar
Ramesh, T. and Downs, C. T. (2014) Land use factors determining occurrence of Red-necked Spurfowl (Pternistis afer) in the Drakensberg Midlands, South Africa. J. Ornithol. 155: 471480.CrossRefGoogle Scholar
Recio, M. R., Mathieu, R., Maloney, R. and Seddon, P. J. (2011) Cost comparison between GPS- and VHF-based telemetry: case study of feral cats Felis catus in New Zealand. N.Z. J. Ecol. 35: 114117.Google Scholar
Scott, D. M., Brown, D., Mahood, S., Denton, B., Silburn, A. and Rakotondraparany, F. (2006) The impacts of forest clearance on lizard, small mammal and bird communities in the arid spiny forest, southern Madagascar. Biol. Conserv. 127: 7287.CrossRefGoogle Scholar
Sekercioglu, C. H. (2002) Impacts of birdwatching on human and avian communities. Environ. Conserv. 29: 282289.CrossRefGoogle Scholar
Sekercioglu, C. H. (2006) Increasing awareness of avian ecological function. Trends Ecol. Evol. 21: 464471.CrossRefGoogle Scholar
Sekercioglu, C. H., Ehrlich, P. R., Daily, G. C., Aygen, D., Goehring, D. and Sandi, D. (2002) Disappearance of insectivorous birds from tropical forest fragments. Proc. Natl. Acad. Sci. USA 99: 263267.CrossRefGoogle Scholar
Sodhi, N. S., Liow, L. H. and Bazzaz, F. A. (2004) Avian extinctions from tropical and subtropical forests. Annu. Rev. Ecol. Evol. Syst. 35: 323345.CrossRefGoogle Scholar
SunartoSollman, R. Sollman, R., Mohamed, A. and Kelly, M. J. (2013) Camera trapping for the study and conservation of tropical carnivores. Raffles Bull. Zool. 28: 2142.Google Scholar
Thiollay, J.-M. (1999) Responses of an avian community to rain forest degradation. Biodivers. Conserv. 8: 513534.CrossRefGoogle Scholar
Thorstrom, R. and Watson, R. T. (1997) Avian inventory and key species of the Masoala Peninsula, Madagascar. Bird Conserv. Internatn. 7: 99115.CrossRefGoogle Scholar
Trolliet, F., Huynen, M.-C., Vermeulen, C. and Hambuckers, A. (2014) Use of camera traps for wildlife studies. A review. Biotechnol. Agron. Soc. Environ. 18: 446454.Google Scholar
Watson, J. E. M., Whittaker, R. J. and Dawson, T. P. (2004) Habitat structure and proximity to forest edge affect the abundance and distribution of forest-dependent birds in tropical coastal forests of southeastern Madagascar. Biol. Conserv. 120: 311327.CrossRefGoogle Scholar
Wegge, P., Pokheral, C. P. and Jnawali, S. R. (2004) Effects of trapping effort and trap shyness on estimates of tiger abundance from camera trap studies. Anim. Conserv. 7: 251256.CrossRefGoogle Scholar
Welbourne, D. J., MacGregor, C., Paull, D. and Lindenmayer, D. P. (2015) The effectiveness and cost of camera traps for surveying small reptiles and critical weight range mammals: a comparison with labour-intensive complementary methods. Wildl. Res. 42: 414425.CrossRefGoogle Scholar
Winarni, N. L., O’Brien, T. G., Carroll, J. P. and Kinnaird, M. F. (2009) Movements, distribution, and abundance of Great Argus Pheasants (Argusianus argus) in a Sumatran rainforest. The Auk 126: 341350.CrossRefGoogle Scholar

Murphy supplementary material

Appendix

File 4 MB

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 43
Total number of PDF views: 222 *
View data table for this chart

* Views captured on Cambridge Core between 24th April 2017 - 18th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-w9qs9 Total loading time: 0.247 Render date: 2021-01-18T20:32:32.262Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Mon Jan 18 2021 20:03:46 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Using camera traps to examine distribution and occupancy trends of ground-dwelling rainforest birds in north-eastern Madagascar
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Using camera traps to examine distribution and occupancy trends of ground-dwelling rainforest birds in north-eastern Madagascar
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Using camera traps to examine distribution and occupancy trends of ground-dwelling rainforest birds in north-eastern Madagascar
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *