Skip to main content Accessibility help

Discovery of a new breeding population of the Vulnerable Swinhoe’s Rail Coturnicops exquisitus confirmed by genetic analysis



The ‘Vulnerable’ Swinhoe’s Rail Coturnicops exquisitus is believed to occur in only two regions in Russia’s Far East and China’s Heilongjiang province, separated by more than 1,000 km. Recent observations suggest that the Amur region, situated between the two known populations, might be inhabited by this secretive species as well. As the species is rather similar in appearance and field characteristics to its Nearctic sister taxon, the Yellow Rail C. noveboracensis, and almost all field records relate to flushed individuals in flight, we aimed to complement the field observations by genetic evidence. Samples were obtained from four individuals and one eggshell and their mitochondrial cytochrome b genes were amplified and sequenced. The genetic analyses unequivocally confirmed that swab samples and eggshell were attributable to Swinhoe’s Rail, thus constituting the first known breeding record of this species for 110 years. It is therefore likely that the individuals observed in the field also belonged to this species. It seems possible that Swinhoe’s Rail is more widely distributed in the Amur region and was overlooked in the past, possibly due to a misleading description of its calls in the literature.


Corresponding author

*Author for correspondence; e-mail:


Hide All

current address: Paracelsusstrasse 7, 09114 Chemnitz, Germany.



Hide All
Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 33893402.
Antonov, A. I. (2003) New data on avifauna of mid and lower Amur river basin, Russia. Berkut 12: 4749.
Antonov, A. I. (2006) The settlement of new bird species in the Middle Priamurye in the late 20th century - the role of climate change. Pp. 6875 in Climate change impact on ecosystems of the Amur River Basin. Moscow/Vladivostok: WWF Russia.
Antonov, A. I. and Parilov, M. P. (2009) To the assessment of the current status of legally protected bird species at the east of Amur oblast. Amurian Zool. J. 1: 270274.
Antonov, A. I. and Parilov, M. P. (2010) Cadastre of the birds species of Khingansky State Nature Reserve and Burea-Arkhara lowland. Khabarovsk: Russian Academy of Science, Far East Branch.
Austin, J. E. and Buhl, D. A. (2013) Relating Yellow Rail (Coturnicops noveboracensis) occupancy to habitat and landscape features in the context of fire. Waterbirds 36: 199213.
BirdLife International (2001) Threatened birds of Asia: the BirdLife International Red Data Book. Cambridge, UK: BirdLife International.
BirdLife International (2017) Species factsheet: Coturnicops exquisitus.
Brazil, M. (2009) Birds of East Asia. London, UK: Christopher Helm.
Broders, O., Osborne, T. and Wink, M. (2003) A mtDNA phylogeny of bustards (family Otididae) based on nucleotide sequences of the cytochrome b-gene. J. Ornithol. 144: 176185.
Dementiev, G. P. and Gladkov, N. A. (1951) Porzana exquisita, White-winged Crake (Swinhoe´s Crake). Pp. 754756 in Birds of the Soviet Union. Moscow: Sovetskaya Nauka.
Dias, R. A., Centeno, E., Coimbra, M. A. A. and Zefa, E. (2016) First voice analysis and new records of the mysterious Speckled Rail (Coturnicops notatus). Wilson J. Ornithol. 128: 874879.
Duckworth, J. W. and Moores, N. (2008) A re-evaluation of the pre-1948 Korean breeding avifauna: correcting a ‘founder effect’ in perceptions. Forktail 24: 2547.
Fritz, U., Auer, M., Bertolero, A., Cheylan, M., Fattizzo, T., Hundsdorfer, A. K., Martin Sampayo, M., Pretus, J. L., Široký, P. and Wink, M. (2006) A rangewide phylogeography of Hermann’s tortoise, Testudo hermanni (Reptilia: Testudines: Testudinidae): implications for taxonomy. Zoologica Scripta 35: 531543.
Girard, P., Takekawa, J. Y. and Beissinger, S. R. (2010) Uncloaking a cryptic, threatened rail with molecular markers: origins, connectivity and demography of a recently-discovered population. Conserv. Genet. 11: 24092418.
Glushenko, Y., Kalnizkaya, I. and Korobov, D. (2006) Faunal notes on the birds of southwest Primorye. Russ. Ornithol. J. 15: 124127.
Glushenko, Y. N., Elsukov, S. V., Katin, I. O., Nechaev, V. A., Kharchenko, V. A., Shibnev, Y. B. and Shokrin, V. P. (2013) Bird checklists and brief history of studies on birds in the Nature Reserves of Primorskii Krai. Amurian Zool. J. 5: 5688.
Glushenko, Y. N., Xiaomin, L., Korobov, D. V., Volkovskaya-Kurdiukova, E. A., Kalnitzkaya, I. N., Huajin, L., Fengkun, W., and Wentao, Y. (2012) Account of the birds in Xingkai National Nature Biosphere Reserve in 2011-2012 and some totals of avifauna studies in the basin of lake Khanka. Amurian Zool. J. 4: 288303.
Hall, T. A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows. Nucleic Acids Symposium Series 41: 9598.
Miya, A., Sannohe, S., Ebina, J. and Sekishita, H. (2005) A survey report on Yellow Rail (Coturnicops noveboracensis exquisitus) observed during the breeding season at Hotokenuma reclaimed land in Misawa, Aomori Prefecture. Japanese J. Ornithol. 54: 104107.
Moores, N., Kim, A. and Kim, R. (2014) Status of birds, 2014. Seoul: Birds Korea.
Potapov, R. L. and Flint, V. E. (1989) Coturnicops noveboracensis (Gmelin, 1789). Pp. 262265 in Handbuch der Vögel der Sowjetunion. Wittenberg Lutherstadt: A. Ziemsen Verlag.
Robert, M. and Laporte, P. (1997) Field techniques for studying breeding Yellow Rails. J. Field Ornithol. 68: 5663.
Ryabzev, V. V. (1997) Record of Swinhoe´s Rail Coturnicops exquisita at Khinganski nature reserve. Russ. Ornithol. J. 11: 12.
Sambrook, J., Fritsch, E., and Maniatis, T. (1989) Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory Press.
Seifert, N., Becker, P. and Flade, M. (2012) Breeding in a postulated wintering site: first evidence for the breeding of Baillon’s Crake Porzana pusilla in Senegambia, West Africa. Ostrich 83: 7984.
Shibnev, Y. B. and Glushenko, Y. N. (2008) Rare birds of Primorye, in need of special protection. Russ. Ornithol. J. 17: 984987.
Smirenski, S. M. and Smirenski, E. M. (2007) Drought and current status of cranes of the Amur Region. Pp. 3639 in Proceedings of the Suncheon International Crane Symposium.
Sokolova, G. V. (2015) Analyzing the Amur River water regime for the period preceding the catastrophic flood in 2013. Russ. Meteorol. Hydrol. 40: 477479.
Sorenson, M. D., Ast, J. C., Dimcheff, D. E., Yuri, T. and Mindell, D. P. (1999) Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Molec. Phylog. Evol. 12: 105114.
Stegmann, B. (1930) Die Vögel des dauro-mandschurischen Übergangsgebietes. J. fur Ornithologie 78: 389471.
Stein, A. C. (2011) Ornithological observations within Muraviovka Zakaznik during 2009 and 2010. Amurian Zool. J. 111: 7885.
Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Molec. Biol. Evol. 30: 27252729.
Taylor, B. and Sharpe, C. J. (2018) Swinhoe’s Rail (Coturnicops exquisitus). In del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. and de Juana, E., eds. Handbook of the birds of the world alive. Barcelona: Lynx Editions. Retrieved from on 7 February 2018.
Taylor, B. and van Perlo, B. (1998) A guide to the rails, crakes, gallinules and coots of the world. East Sussex, UK: Pica Press.
Van der Bank, F. H., Engelbrecht, G. D., Sauer-Gürth, H., Wink, M., and Mulder, P. F. S. (1998) Allozyme and DNA sequence data support speciation of Northern and Southern populations of silver catfish, Schilbe intermedius (Rüppel, 1832). Comp. Biochem. Physiol. 120: 531543.
Volkovskaya-Kurdiukova, E. A. and Kurdiukov, A. (2010) New records of rare and less-known birds of the Primorye region. Russ. Ornithol. J. 19: 13741394.
Wulf, T., Heim, W. and Thomas, A. (2017) Mysterious calls from the swamp: the song of the Vulnerable Swinhoe’s Rail Coturnicops exquisitus. BirdingASIA 27: 4953.
Yu, S.-H., Zheng, Z., Kershaw, P., Skrypnikova, M. and Huang, K.-Y. (2017) A late Holocene record of vegetation and fire from the Amur Basin, far-eastern Russia. Quaternary Internatn. 432: 7992.
Type Description Title
Supplementary materials

Heim et al. supplementary material
Table S1 and Figure S1

 Word (732 KB)
732 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed