Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-17T23:37:03.341Z Has data issue: false hasContentIssue false

Prognostic value of different cut-off points of the NRS-2002 tool to identify nutritional risk in critically ill patients: a longitudinal study

Published online by Cambridge University Press:  17 February 2023

Bruna Barbosa Stello
Affiliation:
Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
Aline Cattani
Affiliation:
Nutrition and Dietetics Coordination Service of Pompeia Hospital, Caxias do Sul, Rio Grande do Sul, Brazil
Danielle Silla Jobim Milanez
Affiliation:
Nutrition Sciences Graduate Program, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
Elisa Loch Razzera
Affiliation:
Nutrition Sciences Graduate Program, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
Júlia Lima
Affiliation:
Nutrition Sciences Graduate Program, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
Flávia Moraes Silva*
Affiliation:
Nutrition Department and Nutrition Sciences Graduate Program of Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
*
*Corresponding author: Flávia Moraes Silva, email flaviams@ufcspa.edu.br

Abstract

The American Society of Parenteral and Enteral Nutrition recommends nutritional risk (NR) screening in critically ill patients with Nutritional Risk Screening – 2002 (NRS-2002) ≥ 3 as NR and ≥ 5 as high NR. The present study evaluated the predictive validity of different NRS-2002 cut-off points in intensive care unit (ICU). A prospective cohort study was conducted with adult patients who were screened using the NRS-2002. Hospital and ICU length of stay (LOS), hospital and ICU mortality, and ICU readmission were evaluated as outcomes. Logistic and Cox regression analyses were performed to evaluate the prognostic value of NRS-2002, and a receiver operating characteristic curve was constructed to determine the best cut-off point for NRS-2002. 374 patients (61·9 ± 14·3 years, 51·1 % males) were included in the study. Of these, 13·1 % were classified as without NR, 48·9 % and 38·0 % were classified as NR and high NR, respectively. An NRS-2002 score of ≥ 5 was associated with prolonged hospital LOS. The best cut-off point for NRS-2002 was a score ≥ 4, which was associated with prolonged hospital LOS (OR = 2·13; 95 % CI: 1·39, 3·28), ICU readmission (OR = 2·44; 95 % CI: 1·14, 5·22), ICU (HR = 2·91; 95 % CI: 1·47, 5·78) and hospital mortality (HR = 2·01; 95 % CI: 1·24, 3·25), but not with ICU prolonged LOS (P = 0·688). NRS-2002 ≥ 4 presented the most satisfactory predictive validity and should be considered in the ICU setting. Future studies should confirm the cut-off point and its validity in predicting nutrition therapy interaction with outcomes.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

McClave, SA, Taylor, BE, Martindale, RG, et al. (2016) Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr 40, 159211.CrossRefGoogle ScholarPubMed
Boniatti, MM, Friedman, G, Castilho, RK, et al. (2011) Characteristics of chronically critically ill patients: comparing two definitions. Clinics 66, 701704.CrossRefGoogle ScholarPubMed
Preiser, JC, Ichai, C, Orban, JC, et al. (2014) Metabolic response to the stress of critical illness. Br J Anaesth 113, 945954.CrossRefGoogle Scholar
White, JV, Guenter, P, Jensen, G, et al. (2012) Consensus statement Academy of Nutrition and Dietetics and American Society for Parenteral and Enteral Nutrition: characteristics recommended for the identification and documentation of adult malnutrition (undernutrition). JPEN J Parenter Enteral Nutr 36, 275283.CrossRefGoogle Scholar
Lew, CCH, Yandell, R, Fraser, RJL, et al. (2017) Association between malnutrition and clinical outcomes in the intensive care unit: a systematic review. JPEN J Parenter Enteral Nutr 41, 744758.CrossRefGoogle ScholarPubMed
Castro, MG, Ribeiro, PC, Souza, IAO, et al. (2018) Diretriz Brasileira de Terapia Nutricional no Paciente Grave (Brazilian Guidelines for Nutriton therapy of critically ill patients). BRASPEN J 33, 236.Google Scholar
Singer, P, Blaser, AR, Berger, MM, et al. (2019) ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr 38, 4879.CrossRefGoogle ScholarPubMed
Mueller, C, Compher, C & Ellen, DM (2011) American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) Board of Directors. ASPEN clinical guidelines: nutrition screening, assessment, and intervention in adults. JPEN J Parenter Enteral Nutr 35, 1624.CrossRefGoogle ScholarPubMed
Cattani, A, Eckert, IC, Brito, JE, et al. (2020) Nutritional risk in critically ill patients: how it is assessed, its prevalence and prognostic value: a systematic review. Nutr Rev 78, 10521068.CrossRefGoogle ScholarPubMed
Kondrup, J, Rasmussen, HH, Hamberg, O, et al. (2003) Nutritional risk screening (NRS 2002): a new method based on an analysis of controlled clinical trials. Clin Nutr 22, 321336.CrossRefGoogle Scholar
Heyland, DK, Dhaliwal, R, Jiang, X, et al. (2011) Identifying critically ill patients who benefit the most from nutrition therapy: the development and initial validation of a novel risk assessment tool. Crit Care 15, R268.CrossRefGoogle ScholarPubMed
Knaus, WA, Draper, EA, Wagner, DP, et al. (1985) APACHE II: a severity of disease classification system. Crit Care Med 13, 818829.CrossRefGoogle ScholarPubMed
Vincent, JL, Moreno, R, Takala, J, et al. (1996) The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intens Care Med 22, 707710.CrossRefGoogle ScholarPubMed
Maciel, LRMA, Franzosi, OS, Nunes, DSL, et al. (2019) Nutritional risk screening 2002 cut-off to identify high-risk is a good predictor of ICU mortality in critically ill patients. Nutr Clin Pract 34, 137141.CrossRefGoogle ScholarPubMed
Marchetti, J, Reis, AM, Santos, AF, et al. (2019) O elevado risco nutricional está associado a desfechos desfavoráveis em pacientes internados na unidade de terapia intensiva (High nutritional risk is associated with worse outcomes in critically ill patients). Rev Bras Ter Intensiva 31, 326332.Google Scholar
Zhao, X, Li, Y, Ge, Y, et al. (2021) Evaluation of nutrition risk and its association with mortality risk in severely and critically ill COVID-19 patients. JPEN J Parenter Enteral Nutr 45, 3242.CrossRefGoogle ScholarPubMed
Machado Dos Reis, A, Marchetti, J, Forte Dos Santos, A, et al. (2020) NUTRIC Score: isolated and Combined Use With the NRS-2002 to Predict Hospital Mortality in Critically Ill Patients. JPEN J Parenter Enteral Nutr 44, 12501256.CrossRefGoogle ScholarPubMed
Gulsoy, KY & Orhan, S (2022) The Relationship between Mortality and the Modified Nutrition Risk in Critically Ill (mNUTRIC) and Nutritional Risk Screening 2002 (NRS-2002) scores in the intensive care unit. J Coll Physician Surg Pak 32, 848854.Google ScholarPubMed
Shpata, V, Ohri, I, Nurka, T, et al. (2015) The prevalence and consequences of malnutrition risk in elderly Albanian intensive care unit patients. Clin Interv Aging 10:481486.CrossRefGoogle ScholarPubMed
Özbilgin, Ş, Hancı, V, Ömür, D, et al. (2016) Morbidity and mortality predictivity of nutritional assessment tools in the postoperative care unit. Medicine 95, e5038.CrossRefGoogle ScholarPubMed
Majari, K, Imani, H, Hosseini, S, et al. (2021) Comparison of modified NUTRIC, NRS-2002, and MUST scores in Iranian critically ill patients admitted to intensive care units: a prospective cohort study. JPEN J Parenter Enteral Nutr 45, 15041513.CrossRefGoogle ScholarPubMed
Kondrup, J (2014) Nutritional-risk scoring systems in the intensive care unit. Curr Opin Clin Nutr Metab Care 17, 177182.CrossRefGoogle ScholarPubMed
Chumlea, WC, Guo, S, Roche, AF, et al. (1988) Prediction of body weight for the nonambulatory elderly from anthropometry. J Am Diet Assoc 88, 564568.CrossRefGoogle ScholarPubMed
Kuczmarski, MF, Kuczmarski, RJ & Najjar, M (2001) Effects of age on validity of self-reported height, weight, and body mass index: findings from the Third National Health and Nutrition Examination Survey, 1988–1994. J Am Diet Assoc 101, 2834.CrossRefGoogle ScholarPubMed
Coruja, MK, Cobalchini, Y, Wentzel, C, et al. (2020) Nutrition risk screening in intensive care units: agreement Between NUTRIC and NRS 2002 Tools. Nutr Clin Pract 35, 567571.CrossRefGoogle Scholar
Supplementary material: File

Stello et al. supplementary material

Table S1 and Figures S1-S2

Download Stello et al. supplementary material(File)
File 477.2 KB