Skip to main content Accessibility help
×
×
Home

Acute dietary zinc deficiency in rats exacerbates myocardial ischaemia–reperfusion injury through depletion of glutathione

  • Karen Skene (a1), Sarah K. Walsh (a1), Oronne Okafor (a1), Nadine Godsman (a1), Charlotte Barrows (a1), Philip Meier (a1), Margaret J. Gordon (a2), John H. Beattie (a2) and Cherry L. Wainwright (a1)...

Abstract

Zn plays an important role in maintaining the anti-oxidant status within the heart and helps to counter the acute redox stress that occurs during myocardial ischaemia and reperfusion. Individuals with low Zn levels are at greater risk of developing an acute myocardial infarction; however, the impact of this on the extent of myocardial injury is unknown. The present study aimed to compare the effects of dietary Zn depletion with in vitro removal of Zn (N,N,N′,N′-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN)) on the outcome of acute myocardial infarction and vascular function. Male Sprague–Dawley rats were fed either a Zn-adequate (35 mg Zn/kg diet) or Zn-deficient (<1 mg Zn/kg diet) diet for 2 weeks before heart isolation. Perfused hearts were subjected to a 30 min ischaemia/2 h reperfusion (I/R) protocol, during which time ventricular arrhythmias were recorded and after which infarct size was measured, along with markers of anti-oxidant status. In separate experiments, hearts were challenged with the Zn chelator TPEN (10 µm) before ischaemia onset. Both dietary and TPEN-induced Zn depletion significantly extended infarct size; dietary Zn depletion was associated with reduced total cardiac glutathione (GSH) levels, while TPEN decreased cardiac superoxide dismutase 1 levels. TPEN, but not dietary Zn depletion, also suppressed ventricular arrhythmias and depressed vascular responses to nitric oxide. These findings demonstrate that both modes of Zn depletion worsen the outcome from I/R but through different mechanisms. Dietary Zn deficiency, resulting in reduced cardiac GSH, is the most appropriate model for determining the role of endogenous Zn in I/R injury.

Copyright

Corresponding author

*Corresponding author: Professor C. L. Wainwright, email c.wainwright@rgu.ac.uk

References

Hide All
1. Saper, RB & Rash, R (2009) Zinc: an essential micronutrient. Am Fam Physician 79, 768772.
2. Bruno, RE, Song, Y, Leonard, SW, et al. (2007) Dietary zinc restriction in rats alters antioxidant status and increases plasma F2 isoprostanes. J Nutr Biochem 18, 509518.
3. Prasad, AS (2014) Zinc: an antioxidant and anti-inflammatory agent: role of zinc in degenerative disorders of aging. J Trace Elem Med Biol 28, 364371.
4. Haase, H, Overbeck, S & Rink, L (2008) Zinc supplementation for the treatment or prevention of disease: current status and future perspectives. Exp Gerontol 43, 394408.
5. Xu, Z & Zhou, J (2013) Zinc and myocardial ischemia/reperfusion injury. Biometals 26, 863878.
6. Truong-Tran, AQ, Carter, J, Ruffin, RE, et al. (2001) The role of zinc in caspase activation and apoptotic cell death. Biometals 14, 315330.
7. Lee, SR, Noh, SJ, Pronto, JR, et al. (2015) The critical roles of zinc: beyond impact on myocardial signaling. Korean J Physiol Pharmacol 19, 389399.
8. Katayama, T, Honda, Y, Yamasaki, H, et al. (1990) Serum zinc concentration in acute myocardial infarction. Angiology 41, 479485.
9. Low, WI & Ikram, H (1976) Plasma zinc in acute myocardial infarction. Diagnostic and prognostic implications. Br Heart J 38, 13391342.
10. Chanoit, G, Lee, S, Xi, J, et al. (2008) Exogenous zinc protects cardiac cells from reperfusion injury by targeting mitochondrial permeability transition pore through inactivation of glycogen synthase kinase-3beta. Am J Physiol Heart Circ Physiol 295, H1227H1233.
11. Karagulova, G, Yue, Y, Moreyra, A, et al. (2007) Protective role of intracellular zinc in myocardial ischemia/reperfusion is associated with preservation of protein kinase C isoforms. J Pharmacol Exp Ther 32, 517525.
12. Kansal, SK, Jyoti, U, Sharma, S, et al (2015) Effect of zinc supplements in the attenuated cardioprotective effect of ischemic preconditioning in hyperlipidemic rat heart. Naunyn Schmiedebergs Arch Pharmacol 388, 635641.
13. Ozyildirim, S, Baltaci, AK, Sahna, E, et al. (2017) Effects of chronic and acute zinc supplementation on myocardial ischemia-reperfusion injury in rats. Biol Trace Elem Res 178, 6470.
14. Ferdinandy, P, Appelbaum, Y, Csonka, C, et al. (1998) Role of nitric oxide and TPEN, a potent metal chelator, in ischaemic and reperfused rat isolated hearts. Clin Exp Pharmacol Physiol 25, 496502.
15. Shmist, YA, Kamburg, R, Ophir, G, et al. (2005) N,N,N′,N′-Tetrakis(2-pyridylmethyl)-ethylenediamine improves myocardial protection against ischemia by modulation of intracellular Ca2+ homeostasis. J Pharmacol Exp Ther 313, 10461057.
16. Coudray, C, Charlon, V, de Leiris, J, et al. (1993) Effect of zinc deficiency on lipid peroxidation status and infarct size in rat hearts. Int J Cardiol 41, 109113.
17. Pucheu, S, Coudray, C, Tresallet, N, et al. (1995) Effect of dietary antioxidant trace element supply on cardiac tolerance to ischemia–reperfusion in the rat. J Mol Cell Cardiol 27, 23032314.
18. Beattie, JH & Kwun, IS (2004) Is zinc deficiency a risk factor for atherosclerosis? Br J Nutr 91, 177181.
19. Choi, S, Liu, X & Pan, Z (2018) Zinc deficiency and cellular oxidative stress: prognostic implications in cardiovascular diseases. Acta Pharmacol Sin 39, 11201132.
20. Beattie, JH, Gordon, MJ, Duthie, SJ, et al. (2012) Suboptimal dietary zinc intake promotes vascular inflammation and atherogenesis in a mouse model of atherosclerosis. Mol Nutr Food Res 56, 10971105.
21. Tomat, A, Elesgaray, R, Zago, V, et al. (2010) Exposure to zinc deficiency in fetal and postnatal life determines nitric oxide system activity and arterial blood pressure levels in adult rats. Br J Nutr 104, 382389.
22. Tomat, AL, Weisstaub, AR, Jauregui, A, et al. (2005) Moderate zinc deficiency influences arterial blood pressure and vascular nitric oxide pathway in growing rats. Pediatr Res 58, 672676.
23. Allen-Redpath, K, Ou, O, Beattie, JH, et al. (2013) Marginal dietary zinc deficiency in vivo induces vascular smooth muscle cell apoptosis in large arteries. Cardiovasc Res 99, 525534.
24. Hennig, B, Wang, Y, Ramasamy, S, et al. (1992) Zinc deficiency alters barrier function of cultured porcine endothelial cells. J Nutr 122, 12421247.
25. Alcantara, EH, Shin, MY, Feldmann, J, et al. (2013) Long-term zinc deprivation accelerates rat vascular smooth muscle cell proliferation involving the down-regulation of JNK1/2 expression in MAPK signaling. Atherosclerosis 228, 4652.
26. Kilkenny, C, Browne, W, Cuthill, IC, et al. (2010) Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol 160, 15771579.
27. Ou, O, Allen-Redpath, K, Urgast, D, et al. (2013) Plasma zinc’s alter ego is a low-molecular-weight humoral factor. FASEB J 27, 36723682.
28. Curtis, MJ, Hancox, JC, Farkas, A, et al. (2013) The Lambeth Conventions (II): guidelines for the study of animal and human ventricular and supraventricular arrhythmias. Pharmacol Ther 139, 213248.
29. Kim, JH, Kim, J, Park, YH, et al. (2010) Effects of postconditioning with N,N,NN′-tetrakis-[2-pyridylmethyl]-ethylenediamine in isolated rat hearts. Korean J Anesthesiol 58, 290295.
30. Beattie, JH, Gordon, MJ, Rucklidge, GJ, et al. (2008) Aorta protein networks in marginal and acute zinc deficiency. Proteomics 8, 21262135.
31. Turan, B & Tuncay, E (2017) Impact of labile zinc on heart function: from physiology to pathophysiology. Int J Mol Sci 18, E2395.
32. Luizzi, RJ & Cousins, JP (2004) Mammalian zinc transporters. Annu Rev Nutr 24, 151172.
33. Baltaci, AK, Yuce, K & Moqulkoc, R (2018) Zinc metabolism and metallothioneins. Biol Trace Elem Res 183, 2231.
34. Bodiga, VL, Thokala, S, Kovur, SM, et al. (2017) Zinc dyshomeostasis in cardiomyocytes after acute hypoxia/reoxygenation. Biol Trace Elem Res 179, 117129.
35. Jang, Y, Wang, H, Xi, J, et al. (2007) NO mobilizes intracellular Zn2+ via cGMP/PKG signaling pathway and prevents mitochondrial oxidant damage in cardiomyocytes. Cardiovasc Res 75, 426433.
36. Lin, CL, Tseng, HC, Chen, RF, et al. (2011) Intracellular zinc release-activated ERK-dependent GSK-3β-p53 and Noxa-Mcl-1 signaling are both involved in cardiac ischemic–reperfusion injury. Cell Death Differ 18, 16511663.
37. Oteiza, PI (2012) Zinc and the modulation of redox homeostasis. Free Radic Biol Med 53, 17481759.
38. Cheung, PY, Wang, W & Schulz, R (2000) Glutathione protects against myocardial ischemia–reperfusion injury by detoxifying peroxynitrite. J Mol Cell Cardiol 32, 16691678.
39. Chatham, JC, Seymour, AL, Harmsen, E, et al. (1988) Depletion of myocardial glutathione: its effects on heart function and metabolism during ischaemia and reperfusion. Cardiovasc Res 22, 833839.
40. Burke, JP & Fenton, MR (1985) Effect of a zinc-deficient diet on lipid peroxidation in liver and tumor subcellular membranes. Proc Soc Exp Biol Med 179, 187191.
41. Kojima-Yuasa, A, Umeda, K, Ohkita, T, et al. (2005) Role of reactive oxygen species in zinc deficiency-induced hepatic stellate cell activation. Free Radic Biol Med 39, 631640.
42. Kraus, A, Roth, HP & Kirchgessner, M (1997) Supplementation with vitamin C, vitamin E or beta-carotene influences osmotic fragility and oxidative damage of erythrocytes of zinc-deficient rats. J Nutr 127, 12901296.
43. Omata, N, Murata, T, Maruoka, N, et al. (2012) Effect of dietary zinc deficiency on ischemic vulnerability of the brain. Neurosci Lett 531, 1013.
44. Clegg, MS, Hanna, LA, Niles, BJ, et al. (2005) Zinc deficiency-induced cell death. UBMB Life 57, 661669.
45. Makino, N, Oyama, J, Maeda, T, et al. (2016) FoxO1 signaling plays a pivotal role in the cardiac telomere biology responses to calorie restriction. Mol Cell Biochem 412, 119130.
46. Fukushima, S, Coppen, SR, Varela-Carver, A, et al. (2006) Enhanced efficiency of superoxide dismutase-induced cardioprotection by retrograde intracoronary administration. Cardiovasc Res 69, 459465.
47. Jones, SP, Hoffmeyer, MR, Sharp, BR, et al. (2003) Role of intracellular antioxidant enzymes after in vivo myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol 284, H277H282.
48. Melo, DS, Costa-Pereira, LV, Santos, CS, et al. (2016) Severe calorie restriction reduces cardiometabolic risk factors and protects rat hearts from ischemia/reperfusion injury. Front Physiol 7, 106.
49. Noyan, H, El-Mounayri, O, Isserlin, R, et al. (2015) Cardioprotective signature of short-term caloric restriction. PLOS ONE 10, e0130658.
50. Strålin, P, Karlsson, K, Johansson, BO, et al. (1995) The interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase. Arterioscler Thromb Vasc Biol 15, 20322036.
51. Omar, BA & McCord, JM (1991) Interstitial equilibration of superoxide dismutase correlates with its protective effect in the isolated rabbit heart. J Mol Cell Cardiol 23, 149159.
52. McKnight, KA, Rupp, H, Beamish, RE, et al. (1996) Modification of catecholamine-induced changes in heart function by food restriction in rats. Cardiovasc Drug Ther 10, Suppl. 1, 239246.
53. Demiryürek, AT, Cakici, I, Wainwright, CL, et al. (1998) Effects of free radical production and scavengers on occlusion–reperfusion induced arrhythmias. Pharmacol Res 38, 433439.
54. Sato, M, Yanagisawa, H, Nojima, Y, et al. (2002) Zn deficiency aggravates hypertension in spontaneously hypertensive rats: possible role of Cu/Zn-superoxide dismutase. Clin Exp Hypertens 24, 355370.
55. Sato, M, Kurihara, N, Moridaira, K, et al. (2003) Dietary Zn deficiency does not influence systemic blood pressure and vascular nitric oxide signaling in normotensive rats. Biol Trace Elem Res 91, 157172.
56. Sztretye, M, Deli, T, Szentesi, P, et al. (2007) Effect of TPEN on the calcium release of cultured C2C12 mouse myotubes. J Muscle Res Cell Motil 28, 421428.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
PDF
Supplementary materials

Skene et al. supplementary material
Table S1

 PDF (110 KB)
110 KB
PDF
Supplementary materials

Skene et al. supplementary material
Table S2

 PDF (103 KB)
103 KB
PDF
Supplementary materials

Skene et al. supplementary material
Table S3

 PDF (95 KB)
95 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed