Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-28T15:23:17.138Z Has data issue: false hasContentIssue false

Adaptation of the rat to a low-protein diet: the effect of a reduced protein intake on the pattern of incorporation of L-[14C]lysine

Published online by Cambridge University Press:  09 March 2007

J. C Waterlow
Affiliation:
Medical Research Council Tropical Metabolism Research Unit, St Mary's Hospital, London, W2
Joan M. L. Stephen
Affiliation:
Medical Research Council Tropical Metabolism Research Unit, St Mary's Hospital, London, W2
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Rats were chronically depleted of protein by being kept on a 6% casein diet for 5–8 weeks. Control rats were fed on a normal diet. Both groups were injected intraperitoneally with L-[U-14C]lysine. Some rats from each group were then put on a protein-free diet to produce acute depletion. The animals were killed 3 days after the injection. 2. The organs and tissues were analysed for total nitrogen and radioactivity. Free lysine, total amino N and specific activity of free lysine were measured in muscle, liver and serum. The total muscle mass of the animals was determined. Samples of muscle and skin were fractionated and the sp. ac. of the fractions was measured. 3. The main loss of N in acute depletion was found in the viscera and carcass residue; the percentage of total body N contributed by muscle was increased in protein-depleted rats. 4. The depleted rats retained relatively more radioactivity in the internal organs and less in the carcass than normal rats. 5. The ratio of the sp. ac. in protein-bound lysine to the sp. ac. of free lysine showed that protein synthesis was reduced in the muscle of the protein-depleted rats, although there was no decrease in the amount or sp. ac. of free lysine even in severe depletion. 6. Sarcoplasmic and fibrillar proteins of muscle were equally affected by protein depletion, but there was some indication of a preferential decrease in protein synthesis in one of the skin fractions. 7. The results for muscle protein are compared with those given in the literature for liver proteins. It is suggested that the rat adapts to a low-protein intake by an alteration in the pattern of protein synthesis.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1966

References

REFERENCES

Addis, T., Poo, L. J. & Lew, W. (1936). J. biol. Chem. 115, 117.Google Scholar
Allison, J. B., Wannemacher, R. W. Jr & Banks, W. L. Jr (1963). Fedn Proc. Fedn Am. Socs exp. Biol. 22, 1126.Google Scholar
Barry, J. M. (1952). J. biol. Chem. 195, 795.Google Scholar
Bendicenti, A., Mariani, A., Paolucci, A. M. & Spadoni, M. A. (1959). Boll. Soc. ital. Biol. sper. 35, 1997.Google Scholar
Bidinost, L. E. (1951). J. biol. Chem. 190, 423.Google Scholar
Bonsnes, R. W. & Taussky, H. H. (1945). J. biol. Chem. 158, 581.Google Scholar
Čabak, V., Dickerson, J. W. T. & Widdowson, E. M. (1963). Br. J. Nutr. 17, 601.Google Scholar
Christensen, H. N., Streicher, J. A. & Elbinger, R. L. (1948). J. biol. Chem. 172, 515.Google Scholar
Dickerson, J. W. T. (1960). Biochem. J. 75, 33.Google Scholar
Dickerson, J. W. T. & McCance, R. A. (1964). Clin. Sci. 27, 123.Google Scholar
Gaetani, S., Mariani, A., Spadoni, M. A. & Tomassi, G. (1961). Boll. Soc. ital. Biol. sper. 37, 1685.Google Scholar
Gaetani, S., Paolucci, A. M., Spadoni, M. A. & Tomassi, G. (1964). J. Nutr. 84, 173.Google Scholar
Garrow, J. S. (1959). J. clin. Invest. 38, 1241.Google Scholar
Garrow, J. & Piper, E. A. (1955). Biochem. J. 60, 527.Google Scholar
Hagan, S. N. & Scow, R. O. (1957). Am. J. Physiol. 188, 91.Google Scholar
Henriques, O. B., Henriques, S. B. & Neuberger, A. (1955). Biochem. J. 60, 409.Google Scholar
Humphrey, J. H., Neuberger, A. & Perkins, D. J. (1957). Biochem. J. 66, 390.Google Scholar
Humphrey, J. H. & Sulitzeanu, B. D. (1958). Biochem. J. 68, 146.Google Scholar
Indian Council of Medical Research (1963). Rep. Indian Coun. med. Res. 1962–3, p. 10.Google Scholar
Jagenburg, O. R. (1959). Scand. J. clin. Lab. Invest. 11, Suppl. 43, p. 1.Google Scholar
Jasin, H. E., Fink, C. W., Wise, W. & Ziff, M. (1962). J. clin. Invest. 41, 1928.Google Scholar
Kean, E. A. (1959). Q. Jl exp. Physiol. 44, 351.Google Scholar
Kerpel-Fronius, E. & Frank, K. (1949). Annls Paediat. 173, 321.Google Scholar
Kostyo, J. L. (1959). Nature, Lond. 183, 1518.Google Scholar
Lajtha, A., Furst, S., Gerstein, A. & Waelsch, H. (1957). J. Neurochem. 1, 289.Google Scholar
Leach, A. A. (1960). Biochem. J. 74, 70.Google Scholar
Manchester, K. L. & Wool, I. G. (1963). Biochem. J. 89, 202.Google Scholar
Manchester, K. L. & Young, F. G. (1958). Biochem. J. 70, 353.Google Scholar
Mariani, A., Spadoni, M. A. & Tomassi, G. (1963). Nature, Lond. 199, 378.Google Scholar
Mendes, C. B. (1959). Studies on the composition of muscle of weanling rats after protein depletion and repletion. PhD Thesis, University of London.Google Scholar
Mendes, C. B. & Waterlow, J. C. (1958). Br. J. Nutr. 12, 74.Google Scholar
Montgomery, R. D. (1962). J. clin. Path. 15, 511.Google Scholar
Munro, H. N. & Mukerji, D. (1958). Biochem. J. 69, 321.Google Scholar
Munro, H. N. & Mukerji, D. (1962). Biochem. J. 82, 520.Google Scholar
Muramatsu, K., Sato, T. & Ashida, K. (1963). J. Nutr. 81, 427.Google Scholar
Penn, N. W., Mandeles, S. & Anker, H. S. (1957). Biochim. biophys. Acta 26, 349.Google Scholar
Picou, D., Alleyne, G. O. A. & Seakins, A. (1965). Clin. Sci. 29, 517.Google Scholar
Picou, D., Halliday, D. & Garrow, J. S. (1966). Clin. Sci. 30, 345.Google Scholar
Platt, B. S., Heard, C. R. C. & Stewart, R. J. C. (1964). In Mammalian Protein Metabolism. Vol. 2, Chapter 21, p. 446. [Munro, H. N. and Allison, J. B., editors.] New York and London: Academic Press Inc.Google Scholar
Roberts, E. & Simonsen, D. G. (1962). In Amino-acid Pools, p. 334. [Holden, J. T., editor.] Amsterdam: Elsevier.Google Scholar
Schimke, R. T. (1962). J. biol. Chem. 237, 1921.Google Scholar
Schreier, K. & Kazassis, C. (1960). Nature, Lond. 187, 1117.Google Scholar
Sendroy, J. Jr (1937). J. biol. Chem. 120, 405.Google Scholar
Solomon, G. & Tarver, H. (1952). J. biol. Chem. 195, 447.Google Scholar
Standard, K. L., Wills, V. G. & Waterlow, J. C. (1959). Am. J. clin. Nutr. 7, 271.Google Scholar
Stephen, J. M. L. & Waterlow, J. C. (1965). J. Physiol., Lond. 178, 40P.Google Scholar
Thompson, H. T., Schurr, P. E., Henderson, L. M. & Elvehjem, C. A. (1950). J. biol. Chem. 182, 47.Google Scholar
Waterlow, J. (1959). Nature, Lond. 184, 1875.Google Scholar
Waterlow, J. C. (1962). In Protein Metabolism. [Gross, F., editor.] Berlin: Springer-Verlag.Google Scholar
Waterlow, J. C., Cravioto, J. & Stephen, J. M. L. (1960). Adv. Protein Chem, 15. 131.Google Scholar
Waterlow, J. C. & Mendes, C. B. (1957). Nature, Lond. 180, 1361.Google Scholar
Widdowson, E. M. & McCance, R. A. (1956). Br. J. Nutr. 10, 363.Google Scholar
Wilmer, H. A., (1940). Proc. Soc. exp Biol. Med. 43, 545.Google Scholar
Wool, I. G. (1960). Am. J. Physiol. 198, 357.Google Scholar