Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T21:23:56.588Z Has data issue: false hasContentIssue false

The chemical composition of rumen bacteria and cell walls from rumen bacteria

Published online by Cambridge University Press:  09 March 2007

N. J. Hoogenraad
Affiliation:
Russell Grimwade School of Biochemistry, University of Melbourne, Parkville, Victoria, Australia
F. J. R. Hird
Affiliation:
Russell Grimwade School of Biochemistry, University of Melbourne, Parkville, Victoria, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Rumen bacteria were prepared in bulk from freshly killed sheep. They were exposed to ultrasonic disintegration and a preparation of cell walls was made by differential centrifugation.

2. The amino acid composition of acid hydrolysates of whole cells and cell walls was determined. Summation of these results shows that whole cells contained approximately 40% amino acids and cell walls approximately 30%.

3. A considerable proportion of the alanine content of cell walls was present as the D-isomer, partly ester linked as in teichoic acids and partly more tightly bound in ‘peptide linkage’ being released only after hydrolysis in constant boiling hydrochloric acid.

4. Cell walls were found to possess an alanine racemase which was inactivated only after incubation of the cell walls in 0.1 M-NaOH.

5. Whole cells contained approximately 8% carbohydrates and cell walls approximately 5%. The glucose and galactose contents of whole cells and cell walls were low, accounting for little more than 2% of the dry weight of the bacterial samples.

6. The amino sugar content of bacterial samples was approximately 3% and consisted mainly of glucosamine.

7. The total lipid content of rumen bacteria was approximately 25% and that of cell walls varied considerably between 10 and 23%.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1970

References

Albersheim, P., Nevins, D. J., English, P. D. & Karr, A. (1967). Carbohydrate Res. 5, 340.CrossRefGoogle Scholar
Armstrong, J. J., Baddiley, J. & Buchanan, J. G. (1960). Biochem. J. 76, 610.CrossRefGoogle Scholar
Black, A. L., Kleiber, M. & Smith, A. H. (1952). J. biol. Chem. 197, 365.CrossRefGoogle Scholar
Brown, M. E. (1961). Diabetes 10, 60.CrossRefGoogle Scholar
Dahlqvist, A. (1961). Biochem. J. 80, 547.CrossRefGoogle Scholar
Dixon, M. & Kleppe, K. (1965). Biochim. biophys. Acta 96, 357.CrossRefGoogle Scholar
Dubois, M., Gilles, K., Hamilton, J. K., Rebers, P. A. & Smith, F. (1951). Nature, Lond. 168, 167.CrossRefGoogle Scholar
Dygert, S., Li, L. H., Florida, D. & Thoma, J. A. (1965). Analyt. Biochem. 13, 367.CrossRefGoogle Scholar
Heald, P. J. (1951). Br. J. Nutr. 5, 84.CrossRefGoogle Scholar
Hoogenraad, N. J., Hird, F. J. R., White, R. G. & Leng, R. A. (1970). Br. J. Nutr. 24, 129.CrossRefGoogle Scholar
Huggett, A. St. G. & Nixon, D. A. (1957). Lancet ii, 368.CrossRefGoogle Scholar
Johnson, B. C., Hamilton, T. S., Robinson, W. B. & Garey, J. C. (1944). J. Anim. Sci. 3, 287.CrossRefGoogle Scholar
Krebs, H. A. (1935). Biochem. J. 29, 1620.CrossRefGoogle Scholar
Krebs, H. A. & Lund, P. (1966). Biochem. J. 98, 210.CrossRefGoogle Scholar
McDonald, I. W. & Hall, R. J. (1957). Biochem. J. 67, 400.CrossRefGoogle Scholar
McNaught, M. L., Smith, J. A. B., Henry, K. M. & Kon, S. K. (1950). Biochem. J. 46, 32.CrossRefGoogle Scholar
Massey, V., Palmer, G. & Bennett, R. (1961). Biochim. biophys. Acta 48, 1.CrossRefGoogle Scholar
Moore, S. & Stein, W. H. (1963). In Methods in Enzymology. Vol. 6, p. 819. [Colowick, S. P. and Kaplan, N.O, editors.] New York: Academic Press Inc.Google Scholar
Nelson, N. ( 1944). J. biol. Chem. 153, 375.CrossRefGoogle Scholar
Purser, D. B. & Buechler, S. M. (1966). J. Dairy Sci. 49, 81.CrossRefGoogle Scholar
Reed, F. M., Moir, R. J. & Underwood, E. J. (1949). Aust. J. scient. Res. B 2, 304.Google Scholar
Roe, J. H. (1955). J. biol. Chem. 212, 335.CrossRefGoogle Scholar
Rondle, C. J. M. & Morgan, W. T. J. (1955). Biochem. J. 61, 586.CrossRefGoogle Scholar
Roth, H., Segal, S. & Bertoli, D. (1965). Analyt. Biochem. 10, 32.CrossRefGoogle Scholar
Salton, M. R. J. (1964 a). The Bacterial Cell Wall, p. 246. Amsterdam: Elsevier Publ. Co.Google Scholar
Salton, M. R. J. (1964 b). The Bacterial Cell Wall, p. 265. Amsterdam: Elsevier Publ. Co.Google Scholar
Salton, M. R. J. & Horne, R. W. (1951). Biochim. biophys. Acta 7, 177.CrossRefGoogle Scholar
Salton, M. R. J. & Pavlik, J. G. (1960). Biochim. biophys. Acta 39, 398.CrossRefGoogle Scholar
Smith, J. A. B. & Baker, F. (1944). Biochem. J. 38, 496.CrossRefGoogle Scholar
Somogyi, M. (1945). J. biol. Chem. 160, 61.CrossRefGoogle Scholar
Toennies, G., Bakay, B. & Shockman, G. D. (1959). J. biol. Chem. 234, 3269.CrossRefGoogle Scholar
Trevelyan, W. E., Procter, D. P. & Harrison, J. S. (1950). Nature, Lond. 166, 444.CrossRefGoogle Scholar
Washko, M. E. & Rice, E. W. (1961). Clin. Chem. 7, 542.CrossRefGoogle Scholar
Weller, R. A. (1957). Aust. J. biol. Sci. 10, 384.CrossRefGoogle Scholar
Weller, R. A., Gray, F. V. & Pilgrim, A. F. (1958). Br. J. Nutr. 12, 421.CrossRefGoogle Scholar
Wheeldon, L. W. & Collins, F. D. (1957). Biochem. J. 66, 435.CrossRefGoogle Scholar