Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T06:26:30.277Z Has data issue: false hasContentIssue false

Clinical impacts of n-3 fatty acids supplementation on depression symptoms: an umbrella review of meta-analyses

Published online by Cambridge University Press:  27 October 2023

Yi Lu*
Affiliation:
Department of Physical Therapy, Shandong Mental Health Center, Shandong University, Jina, Shandong 250014, People’s Republic of China
Dongdong Qiao
Affiliation:
Department of Psychology, Shandong Mental Health Center, Shandong University, Jina, Shandong 250014, People’s Republic of China
Guolin Mi
Affiliation:
Department of Psychosomatic Medicine, Shandong Mental Health Center, Shandong University, Jina, Shandong 250014, People’s Republic of China
*
*Corresponding author: Yi Lu, email luyibabyflower@sina.com

Abstract

Several meta-analyses investigating the efficacy of n-3 PUFA in alleviating depression symptoms have reported conflicting findings. In the present study, we aimed to perform an umbrella meta-analysis to provide a definite conclusion. A comprehensive systematic search of PubMed, Scopus, Embase, Web of Science and Cochrane Central Library was performed up to June 2021. Meta-analysis studies evaluating the effects of n-3 PUFA on depression symptoms were included. The quality of the included meta-analyses was assessed using AMSTAR questionnaire. Out of 101 studies, twenty-two studies with twenty-six effect sizes (ES) were eligible for inclusion. Sixteen ES showed significant improving effect of n-3 supplementation on depression symptoms among which eleven ES had small ES. The other studies observed no significant effect. Available evidence suggests that n-3 PUFA (EPA, DHA) supplementation could be considered as an effective add-on therapeutic approach in relieving depression symptoms.

Type
Systematic Review and Meta-Analysis
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

James, SL, Abate, D, Abate, KH, et al. (2018) Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 17891858.CrossRefGoogle Scholar
Musazadeh, V, Zarezadeh, M, Faghfouri, AH, et al. (2022) Probiotics as an effective therapeutic approach in alleviating depression symptoms: an umbrella meta-analysis. Crit Rev Food Sci Nutr 63, 8292–8300.CrossRefGoogle ScholarPubMed
Ettman, CK, Abdalla, SM, Cohen, GH, et al. (2020) Prevalence of depression symptoms in US adults before and during the COVID-19 pandemic. JAMA Netw Open 3, e2019686.CrossRefGoogle ScholarPubMed
Turegeldieva, A & Amitov, S (2020) The social aspect of the diagnosis and clinical picture of postnatal depression in women. Вестник КазНУ Серия психологии и социологии 73, 101107.Google Scholar
Yang, Y, Wang, H, Hu, J, et al. (2018) Lateral habenula in the pathophysiology of depression. Curr Opin Neurobiol 48, 9096.CrossRefGoogle ScholarPubMed
Jesulola, E, Micalos, P & Baguley, IJ (2018) Understanding the pathophysiology of depression: from monoamines to the neurogenesis hypothesis model – are we there yet? Behav Brain Res 341, 7990.CrossRefGoogle Scholar
Nobis, A, Zalewski, D & Waszkiewicz, N (2020) Peripheral markers of depression. J Clin Med 9, 3793.CrossRefGoogle ScholarPubMed
Jiang, S, Zhang, QA, Guo, Q, et al. (2019) The glutamatergic system and astrocytic impairment in rat hippocampus: a comparative study of underlying etiology and pathophysiology of depression. J Integr Neurosci 18, 387392.Google ScholarPubMed
Kirsch, I, Deacon, BJ, Huedo-Medina, TB, et al. (2008) Initial severity and antidepressant benefits: a meta-analysis of data submitted to the Food and Drug Administration. PLoS Med 5, e45.CrossRefGoogle ScholarPubMed
Khin, NA, Chen, Y-F, Yang, Y, et al. (2011) Exploratory analyses of efficacy data from major depressive disorder trials submitted to the US Food and Drug Administration in support of new drug applications. J Clin Psychiatry 72, 6970.CrossRefGoogle Scholar
Jakobsen, JC, Katakam, KK, Schou, A, et al. (2017) Selective serotonin reuptake inhibitors v. placebo in patients with major depressive disorder. A systematic review with meta-analysis and trial sequential analysis. BMC Psychiatry 17, 128.Google Scholar
Fava, M (2003) Diagnosis and definition of treatment-resistant depression. Biol Psychiatry 53, 649659.CrossRefGoogle ScholarPubMed
Strawbridge, R, Young, AH & Cleare, AJ (2017) Biomarkers for depression: recent insights, current challenges and future prospects. Neuropsychiatr Dis Treat 13, 12451262.CrossRefGoogle ScholarPubMed
Santos, HO, Price, JC & Bueno, AA (2020) Beyond fish oil supplementation: the effects of alternative plant sources of n-3 polyunsaturated fatty acids upon lipid indexes and cardiometabolic biomarkers—an overview. Nutrients 12, 3159.CrossRefGoogle Scholar
Musazadeh, V, Kavyani, Z, Naghshbandi, B, et al. (2022) The beneficial effects of n-3 polyunsaturated fatty acids on controlling blood pressure: an umbrella meta-analysis. Front Nutr 9, 985451.CrossRefGoogle ScholarPubMed
Weiser, MJ, Butt, CM & Mohajeri, MH (2016) Docosahexaenoic acid and cognition throughout the lifespan. Nutrients 8, 99.CrossRefGoogle ScholarPubMed
Krawczyk, K & Rybakowski, J (2012) Augmentation of antidepressants with unsaturated fatty acids n-3 in drug-resistant depression. Psychiatria Polska 46, 585598.Google Scholar
Meital, LT, Windsor, MT, Perissiou, M, et al. (2019) n-3 fatty acids decrease oxidative stress and inflammation in macrophages from patients with small abdominal aortic aneurysm. Sci Rep 9, 111.CrossRefGoogle ScholarPubMed
Kavyani, Z, Musazadeh, V, Fathi, S, et al. (2022) Efficacy of the n-3 fatty acids supplementation on inflammatory biomarkers: an umbrella meta-analysis. Int Immunopharmacol 111, 109104.CrossRefGoogle ScholarPubMed
Liao, Y, Xie, B, Zhang, H, et al. (2019) Efficacy of n-3 PUFAs in depression: a meta-analysis. Transl Psychiatry 9, 19.CrossRefGoogle Scholar
Liao, Y, Xie, B, Zhang, H, et al. (2019) Efficacy of n-3 PUFAs in depression: a meta-analysis. Transl Psychiatry 9, 190.CrossRefGoogle Scholar
Mocking, RJT, Steijn, K, Roos, C, et al. (2020) n-3 fatty acid supplementation for perinatal depression: a meta-analysis. J Clin Psychiatry 81, 13281.CrossRefGoogle ScholarPubMed
Appleton, KM, Sallis, HM, Perry, R, et al. (2015) n-3 fatty acids for depression in adults. The Cochrane Database of Systematic Reviews, issue 11, Cd004692.Google Scholar
Bae, JH & Kim, G (2018) Systematic review and meta-analysis of n-3-fatty acids in elderly patients with depression. Nutr Res (New York, NY) 50, 19.CrossRefGoogle ScholarPubMed
Deane, KHO, Jimoh, OF, Biswas, P, et al. (2021) n-3 and polyunsaturated fat for prevention of depression and anxiety symptoms: systematic review and meta-analysis of randomised trials. Br J Psychiatry: J Mental Sci 218, 135142.CrossRefGoogle Scholar
Suradom, C, Suttajit, S, Oon-Arom, A, et al. (2021) n-3 polyunsaturated fatty acid (n-3 PUFA) supplementation for prevention and treatment of perinatal depression: a systematic review and meta-analysis of randomized-controlled trials. Nord J Psychiatry 75, 239246.CrossRefGoogle ScholarPubMed
Shea, BJ, Grimshaw, JM, Wells, GA, et al. (2007) Development of AMSTAR: a measurement tool to assess the methodological quality of systematic reviews. BMC Med Res Method 7, 17.CrossRefGoogle ScholarPubMed
Appleton, KM, Hayward, RC, Gunnell, D, et al. (2006) Effects of n-3 long-chain polyunsaturated fatty acids on depressed mood: systematic review of published trials. Am J Clin Nutr 84, 13081316.CrossRefGoogle ScholarPubMed
Martins, JG (2009) EPA but not DHA appears to be responsible for the efficacy of n-3 long chain polyunsaturated fatty acid supplementation in depression: evidence from a meta-analysis of randomized controlled trials. J Am Coll Nutr 28, 525542.CrossRefGoogle ScholarPubMed
Martins, JG, Bentsen, H & Puri, BK (2012) Eicosapentaenoic acid appears to be the key n-3 fatty acid component associated with efficacy in major depressive disorder: a critique of Bloch and Hannestad and updated meta-analysis. Mol Psychiatry 17, 11441149; discussion 1163–1147.CrossRefGoogle ScholarPubMed
Appleton, KM, Rogers, PJ & Ness, AR (2010) Updated systematic review and meta-analysis of the effects of n-3 long-chain polyunsaturated fatty acids on depressed mood. Am J Clin Nutr 91, 757770.CrossRefGoogle ScholarPubMed
Bai, ZG, Bo, A, Wu, SJ, et al. (2018) n-3 polyunsaturated fatty acids and reduction of depressive symptoms in older adults: a systematic review and meta-analysis. J Affect Disord 241, 241248.CrossRefGoogle ScholarPubMed
Liu, WH, Zhang, CG, Gao, PF, et al. (2017) n-3 fatty acids as monotherapy in treating depression in pregnant women: a meta-analysis of randomized controlled trials. Iranian J Pharm Res 16, 15931599.Google Scholar
Zhang, MM, Zou, Y, Li, SM, et al. (2020) The efficacy and safety of n-3 fatty acids on depressive symptoms in perinatal women: a meta-analysis of randomized placebo-controlled trials. Transl Psychiatry 10, 193.CrossRefGoogle ScholarPubMed
Yang, JR, Han, D, Qiao, ZX, et al. (2015) Combined application of eicosapentaenoic acid and docosahexaenoic acid on depression in women: a meta-analysis of double-blind randomized controlled trials. Neuropsychiatr Dis Treat 11, 20552061.Google ScholarPubMed
Jans, LAW, Giltay, EJ & Van der Does, AJW (2010) The efficacy of n-3 fatty acids DHA and EPA (fish oil) for perinatal depression. Br J Nutr 104, 15771585.CrossRefGoogle ScholarPubMed
Mocking, RJ, Harmsen, I, Assies, J, et al. (2016) Meta-analysis and meta-regression of n-3 polyunsaturated fatty acid supplementation for major depressive disorder. Transl Psychiatry 6, e756.CrossRefGoogle ScholarPubMed
Bloch, MH & Hannestad, J (2012) n-3 fatty acids for the treatment of depression: systematic review and meta-analysis. Mol Psychiatry 17, 12721282.CrossRefGoogle ScholarPubMed
Hallahan, B, Ryan, T, Hibbeln, JR, et al. (2016) Efficacy of n-3 highly unsaturated fatty acids in the treatment of depression. Br J Psychiatry: J Mental Sci 209, 192201.CrossRefGoogle Scholar
Sarris, J, Mischoulon, D & Schweitzer, I (2012) n-3 for bipolar disorder: meta-analyses of use in mania and bipolar depression. J Clin Psychiatry 73, 8186.CrossRefGoogle Scholar
Sublette, ME, Ellis, SP, Geant, AL, et al. (2011) Meta-analysis of the effects of eicosapentaenoic acid (EPA) in clinical trials in depression. J Clin Psychiatry 72, 15771584.CrossRefGoogle ScholarPubMed
Grosso, G, Pajak, A, Marventano, S, et al. (2014) Role of n-3 fatty acids in the treatment of depressive disorders: a comprehensive meta-analysis of randomized clinical trials. PLoS One 9, e96905.CrossRefGoogle ScholarPubMed
Wolters, M, von der Haar, A & Baalmann, AK, et al. (2021) Effects of n-3 polyunsaturated fatty acid supplementation in the prevention and treatment of depressive disorders-a systematic review and meta-analysis. Nutrients 13, 1070.CrossRefGoogle ScholarPubMed
Lin, PY & Su, KP (2007) A meta-analytic review of double-blind, placebo-controlled trials of antidepressant efficacy of n-3 fatty acids. J Clin Psychiatry 68, 10561061.CrossRefGoogle Scholar
Jans, LA, Giltay, EJ & Van der Does, AW (2010) The efficacy of n-3 fatty acids DHA and EPA (fish oil) for perinatal depression. Br J Nutr 104, 15771585.CrossRefGoogle ScholarPubMed
Wei-Hong, L, Cheng-Gui, Z, Peng-Fei, G, et al. (2017) n-3 fatty acids as monotherapy in treating depression in pregnant women: a meta-analysis of randomized controlled trials. Iranian J Pharmaceut Res: IJPR 16, 1593.Google ScholarPubMed
Mocking, RJ, Steijn, K, Roos, C, et al. (2020) n-3 fatty acid supplementation for perinatal depression: a meta-analysis. J Clin Psychiatry 81, 13281.CrossRefGoogle ScholarPubMed
Zheng, JS, Lin, M, Fang, L, et al. (2016) Effects of n-3 fatty acid supplements on glycemic traits in Chinese type 2 diabetic patients: a double-blind randomized controlled trial. Mol Nutr Food Res 60, 21762184.CrossRefGoogle ScholarPubMed
Zhang, M-M, Zou, Y, Li, S-M, et al. (2020) The efficacy and safety of n-3 fatty acids on depressive symptoms in perinatal women: a meta-analysis of randomized placebo-controlled trials. Transl Psychiatry 10, 193.CrossRefGoogle ScholarPubMed
Sublette, ME, Ellis, SP, Geant, AL, et al. (2011) Meta-analysis of the effects of eicosapentaenoic acid (EPA) in clinical trials in depression. J Clin Psychiatry 72, 11703.CrossRefGoogle ScholarPubMed
Hallahan, B, Ryan, T, Hibbeln, JR, et al. (2016) Efficacy of n-3 highly unsaturated fatty acids in the treatment of depression. Br J Psychiatry 209, 192201.CrossRefGoogle Scholar
Higgins, JP, Altman, DG, Gøtzsche, PC, et al. (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343, d5928.CrossRefGoogle ScholarPubMed
Clark, HD, Wells, GA, Huët, C, et al. (1999) Assessing the quality of randomized trials: reliability of the Jadad scale. Contr Clin Trials 20, 448452.CrossRefGoogle ScholarPubMed
Yang, J-R, Han, D, Qiao, Z-X, et al. (2015) Combined application of eicosapentaenoic acid and docosahexaenoic acid on depression in women: a meta-analysis of double-blind randomized controlled trials. Neuropsychiatr Dis Treat 11, 20552061.Google ScholarPubMed
Lin, P-Y & Su, K-P (2007) A meta-analytic review of double-blind, placebo-controlled trials of antidepressant efficacy of n-3 fatty acids. J Clin Psychiatry 68, 10561061.CrossRefGoogle Scholar
Bae, J-H & Kim, G (2018) Systematic review and meta-analysis of n-3-fatty acids in elderly patients with depression. Nutr Res 50, 19.CrossRefGoogle ScholarPubMed
Appleton, KM, Hayward, RC, Gunnell, D, et al. (2006) Effects of n-3 long-chain polyunsaturated fatty acids on depressed mood: systematic review of published trials. Am J Clin Nutr 84, 13081316.CrossRefGoogle ScholarPubMed
Appleton, KM, Sallis, HM, Perry, R, et al. (2016) ω-3 Fatty acids for major depressive disorder in adults: an abridged Cochrane review. BMJ open 6, e010172.CrossRefGoogle ScholarPubMed
Martins, JG (2009) EPA but not DHA appears to be responsible for the efficacy of n-3 long chain polyunsaturated fatty acid supplementation in depression: evidence from a meta-analysis of randomized controlled trials. J Am Coll Nutr 28, 525542.CrossRefGoogle ScholarPubMed
Mocking, R, Harmsen, I, Assies, J, et al. (2016) Meta-analysis and meta-regression of n-3 polyunsaturated fatty acid supplementation for major depressive disorder. Transl Psychiatry 6, e756.CrossRefGoogle ScholarPubMed
Wolters, M, von der Haar, A, Baalmann, A-K, et al. (2021) Effects of n-3 polyunsaturated fatty acid supplementation in the prevention and treatment of depressive disorders—a systematic review and meta-analysis. Nutrients 13, 1070.CrossRefGoogle ScholarPubMed
Sarris, J, Mischoulon, D & Schweitzer, I (2011) n-3 for bipolar disorder: meta-analyses of use in mania and bipolar depression. J Clin Psychiatry 72, 13263.Google Scholar
Bai, Z-G, Bo, A, Wu, S-J, et al. (2018) n-3 polyunsaturated fatty acids and reduction of depressive symptoms in older adults: a systematic review and meta-analysis. J Affect Disord 241, 241248.CrossRefGoogle ScholarPubMed
Martins, J, Bentsen, H & Puri, B (2012) Eicosapentaenoic acid appears to be the key n-3 fatty acid component associated with efficacy in major depressive disorder: a critique of Bloch and Hannestad and updated meta-analysis. Mol Psychiatry 17, 1144.CrossRefGoogle ScholarPubMed
Lee, EJ, Kim, JB, Shin, IH, et al. (2010) Current use of depression rating scales in mental health setting. Psychiatry Investig 7, 170176.CrossRefGoogle ScholarPubMed
Fried, EI (2017) The 52 symptoms of major depression: lack of content overlap among seven common depression scales. J Affect Disord 208, 191197.CrossRefGoogle ScholarPubMed
Domenichiello, AF, Kitson, AP & Bazinet, RP (2015) Is docosahexaenoic acid synthesis from α-linolenic acid sufficient to supply the adult brain? Prog Lipid Res 59, 5466.CrossRefGoogle ScholarPubMed
Albert, PR (2015) Why is depression more prevalent in women? J Psychiatry Neurosci 40, 219221.CrossRefGoogle ScholarPubMed
Gordon, JL & Girdler, SS (2014) Hormone replacement therapy in the treatment of perimenopausal depression. Curr Psychiatry Rep 16, 517.CrossRefGoogle ScholarPubMed
Kaviani, M, Saniee, L, Azima, S, et al. (2014) The effect of n-3 fatty acid supplementation on maternal depression during pregnancy: a double blind randomized controlled clinical trial. Int J Community Based Nurs Midwifery 2, 142147.Google Scholar
Hsu, MC, Tung, CY & Chen, HE (2018) n-3 polyunsaturated fatty acid supplementation in prevention and treatment of maternal depression: putative mechanism and recommendation. J Affect Disord 238, 4761.CrossRefGoogle ScholarPubMed
Gillies, GE & McArthur, S (2010) Estrogen actions in the brain and the basis for differential action in men and women: a case for sex-specific medicines. Pharmacol Rev 62, 155198.CrossRefGoogle ScholarPubMed
Ouladsahebmadarek, E, Khaki, A, Khanahmadi, S, et al. (2014) Hormonal and metabolic effects of polyunsaturated fatty acid (n-3) on polycystic ovary syndrome induced rats under diet. Iran J Basic Med Sci 17, 123127.Google Scholar
Cutuli, D (2017) Functional and structural benefits induced by n-3 polyunsaturated fatty acids during aging. Curr Neuropharmacol 15, 534542.CrossRefGoogle ScholarPubMed
Tanaka, K, Farooqui, AA, Siddiqi, NJ, et al. (2012) Effects of docosahexaenoic acid on neurotransmission. Biomol Ther (Seoul) 20, 152157.CrossRefGoogle ScholarPubMed
Howe, PRC, Evans, HM, Kuszewski, JC, et al. (2018) Effects of long chain n-3 polyunsaturated fatty acids on brain function in mildly hypertensive older adults. Nutrients 10, 1413.CrossRefGoogle Scholar
Sousa, TM & Santos, LC (2020) Dietary fatty acids, n-6/n-3 ratio and cholesterol intake associated with depressive symptoms in low-risk pregnancy. Nutritional Neuroscience 25, 642647.CrossRefGoogle Scholar
Paduchová, Z, Katrenčíková, B, Vaváková, M, et al. (2021) The effect of n-3 fatty acids on thromboxane, brain-derived neurotrophic factor, homocysteine, and vitamin D in depressive children and adolescents: randomized controlled trial. Nutrients 13, 1095.CrossRefGoogle ScholarPubMed
Yu, H & Chen, Z-Y (2011) The role of BDNF in depression on the basis of its location in the neural circuitry. Acta Pharmacol Sin 32, 311.CrossRefGoogle ScholarPubMed
Wani, AL, Bhat, SA & Ara, A (2015) n-3 fatty acids and the treatment of depression: a review of scientific evidence. Integr Med Res 4, 132141.CrossRefGoogle ScholarPubMed
Bigornia, SJ, Harris, WS, Falcón, LM, et al. (2016) The n-3 index is inversely associated with depressive symptoms among individuals with elevated oxidative stress biomarkers. J Nutr 146, 758766.CrossRefGoogle ScholarPubMed
Koponen, H, Kautiainen, H, Leppänen, E, et al. (2015) Association between suicidal behaviour and impaired glucose metabolism in depressive disorders. BMC Psychiatry 15, 163.CrossRefGoogle ScholarPubMed
Rafraf, M, Mohammadi, E, Asghari-Jafarabadi, M, et al. (2012) n-3 fatty acids improve glucose metabolism without effects on obesity values and serum visfatin levels in women with polycystic ovary syndrome. J Am Coll Nutr 31, 361368.CrossRefGoogle ScholarPubMed
Keller, J, Gomez, R, Williams, G, et al. (2017) HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition. Mol Psychiatry 22, 527536.CrossRefGoogle ScholarPubMed
Silverman, MN & Sternberg, EM (2012) Glucocorticoid regulation of inflammation and its functional correlates: from HPA axis to glucocorticoid receptor dysfunction. Ann N Y Acad Sci 1261, 5563.CrossRefGoogle Scholar
Kim, EY, Choi, JE, Kim, M, et al. (2020) n-3 PUFA have antidepressant-like effects via improvement of the HPA-axis and neurotransmission in rats exposed to combined stress. Mol Neurobiol 57, 38603874.CrossRefGoogle ScholarPubMed
Supplementary material: File

Lu et al. supplementary material

Lu et al. supplementary material
Download Lu et al. supplementary material(File)
File 48.1 KB