Skip to main content Accessibility help
×
×
Home

Dietary intake of carbohydrates and risk of type 2 diabetes: the European Prospective Investigation into Cancer-Norfolk study

  • Sara Ahmadi-Abhari (a1), Robert N. Luben (a1), Natasha Powell (a1), Amit Bhaniani (a1), Rajiv Chowdhury (a1), Nicholas J. Wareham (a2), Nita G. Forouhi (a2) and Kay-Tee Khaw (a1)...

Abstract

In the present study, we investigated the association between dietary intake of carbohydrates and the risk of type 2 diabetes. Incident cases of diabetes (n 749) were identified and compared with a randomly selected subcohort of 3496 participants aged 40–79 years. For dietary assessment, we used 7 d food diaries administered at baseline. We carried out modified Cox proportional hazards regression analyses and compared results obtained from the different methods of adjustment for total energy intake. Dietary intakes of total carbohydrates, starch, sucrose, lactose or maltose were not significantly related to diabetes risk after adjustment for confounders. However, in the residual method for energy adjustment, intakes of fructose and glucose were inversely related to diabetes risk. The multivariable-adjusted hazard ratios (HR) of diabetes comparing the extreme quintiles of intake were 0·79 (95 % CI 0·59, 1·07; P for trend = 0·03) for glucose and 0·62 (95 % CI 0·46, 0·83; P for trend = 0·01) for fructose. In the nutrient density method, only fructose was inversely related to diabetes risk (HR 0·65, 95 % CI 0·48, 0·88). The replacement of 5 % energy intake from SFA with an isoenergetic amount of fructose was associated with a 30 % lower diabetes risk (HR 0·69, 95 % CI 0·50, 0·96). Results of the standard and energy partition methods were similar to those of the residual method. These prospective findings suggest that the intakes of starch and sucrose are not associated, but that those of fructose and glucose are inversely associated with diabetes risk. Whether the inverse associations with fructose and glucose reflect the effect of substitution of these carbohydrate subtypes with other nutrients (i.e. SFA), their net higher intake or other nutrients associated with their intake remains to be established through further investigation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dietary intake of carbohydrates and risk of type 2 diabetes: the European Prospective Investigation into Cancer-Norfolk study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dietary intake of carbohydrates and risk of type 2 diabetes: the European Prospective Investigation into Cancer-Norfolk study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dietary intake of carbohydrates and risk of type 2 diabetes: the European Prospective Investigation into Cancer-Norfolk study
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: S. Ahmadi-Abhari, fax +44 1223 740177, email sa540@medschl.cam.ac.uk

References

Hide All
1 Gillies, CL, Abrams, KR, Lambert, PC, et al. (2007) Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. BMJ 334, 299.
2 Brand-Miller, JC (2004) Postprandial glycemia, glycemic index, and the prevention of type 2 diabetes. Am J Clin Nutr 80, 243244.
3 Barclay, AW, Petocz, P, McMillan-Price, J, et al. (2008) Glycemic index, glycemic load, and chronic disease risk – a meta-analysis of observational studies. Am J Clin Nutr 87, 627637.
4 Sluijs, I, van der Schouw, YT, van der, AD, et al. (2010) Carbohydrate quantity and quality and risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition-Netherlands (EPIC-NL) study. Am J Clin Nutr 92, 905911.
5 Villegas, R, Liu, S, Gao, YT, et al. (2007) Prospective study of dietary carbohydrates, glycemic index, glycemic load, and incidence of type 2 diabetes mellitus in middle-aged Chinese women. Arch Intern Med 167, 23102316.
6 Schulze, MB, Liu, S, Rimm, EB, et al. (2004) Glycemic index, glycemic load, and dietary fiber intake and incidence of type 2 diabetes in younger and middle-aged women. Am J Clin Nutr 80, 348356.
7 Hodge, AM, English, DR, O'Dea, K, et al. (2004) Glycemic index and dietary fiber and the risk of type 2 diabetes. Diabetes Care 27, 27012706.
8 Meyer, KA, Kushi, LH, Jacobs, DR, et al. (2000) Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am J Clin Nutr 71, 921930.
9 Janket, SJ, Manson, JE, Sesso, H, et al. (2003) A prospective study of sugar intake and risk of type 2 diabetes in women. Diabetes Care 26, 10081015.
10 Schulze, MB, Schulz, M, Heidemann, C, et al. (2008) Carbohydrate intake and incidence of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Br J Nutr 99, 11071116.
11 Montonen, J, Jarvinen, R, Knekt, P, et al. (2007) Consumption of sweetened beverages and intakes of fructose and glucose predict type 2 diabetes occurrence. J Nutr 137, 14471454.
12 Barclay, AW, Flood, VM, Rochtchina, E, et al. (2007) Glycemic index, dietary fiber, and risk of type 2 diabetes in a cohort of older Australians. Diabetes Care 30, 28112813.
13 Kim, HS, Paik, HY, Lee, KU, et al. (1988) Effects of several simple sugars on serum glucose and serum fructose levels in normal and diabetic subjects. Diabetes Res Clin Pract 4, 281287.
14 Day, N, Oakes, S, Luben, R, et al. (1999) EPIC-Norfolk: study design and characteristics of the cohort. European Prospective Investigation of Cancer. Br J Cancer 80, Suppl. 1, 95103.
15 Bingham, SA, Welch, AA, McTaggart, A, et al. (2001) Nutritional methods in the European Prospective Investigation of Cancer in Norfolk. Public Health Nutr 4, 847858.
16 Welch, AA, McTaggart, A, Mulligan, AA, et al. (2001) DINER (Data Into Nutrients for Epidemiological Research) – a new data-entry program for nutritional analysis in the EPIC-Norfolk cohort and the 7-day diary method. Public Health Nutr 4, 12531265.
17 Barlow, WE, Ichikawa, L, Rosner, D, et al. (1999) Analysis of case–cohort designs. J Clin Epidemiol 52, 11651172.
18 Prentice, RL (1986) A case–cohort design for epidemiologic cohort studies and disease prevention trials. Biometrika 73, 111.
19 Kipnis, V, Freedman, LS, Brown, CC, et al. (1993) Interpretation of energy adjustment models for nutritional epidemiology. Am J Epidemiol 137, 13761380.
20 Kipnis, V, Freedman, LS, Brown, CC, et al. (1997) Effect of measurement error on energy-adjustment models in nutritional epidemiology. Am J Epidemiol 146, 842855.
21 Willett, WC, Howe, GR & Kushi, LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65, 1220S1228S.
22 Ahmadi-Abhari, S & Chowdhury, R (2011) Dietary intake of carbohydrates and risk of type 2 diabetes: a systematic review and meta analysis. J Epidemiol Community Health 65, A220A221.
23 Kelley, DE (2003) Sugars and starch in the nutritional management of diabetes mellitus. Am J Clin Nutr 78, 858S864S.
24 Franz, MJ (2001) Carbohydrate and diabetes: is the source or the amount of more importance? Curr Diab Rep 1, 177186.
25 Ajala, O, English, P & Pinkney, J (2013) Systematic review and meta-analysis of different dietary approaches to the management of type 2 diabetes. Am J Clin Nutr 97, 505516.
26 Sluijs, I, Beulens, JW, van der, AD, et al. (2010) Dietary intake of total, animal, and vegetable protein and risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-NL study. Diabetes Care 33, 4348.
27 Micha, R & Mozaffarian, D (2010) Saturated fat and cardiometabolic risk factors, coronary heart disease, stroke, and diabetes: a fresh look at the evidence. Lipids 45, 893905.
28 Siri-Tarino, PW, Sun, Q, Hu, FB, et al. (2010) Saturated fat, carbohydrate, and cardiovascular disease. Am J Clin Nutr 91, 502509.
29 Harding, AH, Wareham, NJ, Bingham, SA, et al. (2008) Plasma vitamin C level, fruit and vegetable consumption, and the risk of new-onset type 2 diabetes mellitus: the European prospective investigation of cancer – Norfolk prospective study. Arch Intern Med 168, 14931499.
30 Daly, M (2003) Sugars, insulin sensitivity, and the postprandial state. Am J Clin Nutr 78, 865S872S.
31 Cohen, AM, Teitelbaum, A & Rosenman, E (1977) Diabetes induced by a high fructose diet. Metabolism 26, 1724.
32 Goda, T, Yamada, K, Sugiyama, M, et al. (1982) Effect of sucrose and Acarbose feeding on the development of streptozotocin-induced diabetes in the rat. J Nutr Sci Vitaminol (Tokyo) 28, 4156.
33 Laville, M & Nazare, JA (2009) Diabetes, insulin resistance and sugars. Obes Rev 10, Suppl. 1, 2433.
34 Reiser, S, Handler, HB, Gardner, LB, et al. (1979) Isocaloric exchange of dietary starch and sucrose in humans. II. Effect on fasting blood insulin, glucose, and glucagon and on insulin and glucose response to a sucrose load. Am J Clin Nutr 32, 22062216.
35 Reiser, S, Bohn, E, Hallfrisch, J, et al. (1981) Serum insulin and glucose in hyperinsulinemic subjects fed three different levels of sucrose. Am J Clin Nutr 34, 23482358.
36 Hallfrisch, J, Ellwood, KC, Michaelis, OE, et al. (1983) Effects of dietary fructose on plasma glucose and hormone responses in normal and hyperinsulinemic men. J Nutr 113, 18191826.
37 Koivisto, VA & Yki-Jarvinen, H (1993) Fructose and insulin sensitivity in patients with type 2 diabetes. J Intern Med 233, 145153.
38 Crapo, PA, Kolterman, OG & Henry, RR (1986) Metabolic consequence of two-week fructose feeding in diabetic subjects. Diabetes Care 9, 111119.
39 Cozma, AI, Sievenpiper, JL, de Souza, RJ, et al. (2012) Effect of fructose on glycemic control in diabetes: a systematic review and meta-analysis of controlled feeding trials. Diabetes Care 35, 16111620.
40 Bingham, S, Luben, R, Welch, A, et al. (2007) Epidemiologic assessment of sugars consumption using biomarkers: comparisons of obese and nonobese individuals in the European prospective investigation of cancer Norfolk. Cancer Epidemiol Biomarkers Prev 16, 16511654.
41 Willett, W (1998) Nutritional Epidemiology, 2nd ed. New York, NY: Oxford University Press.
42 Rothman, K, Greenland, S & Timothy, L (2008) Modern Epidemiology, 3rd ed. Philadelphia, PA: Wolters Kluwer Lippincott Williams and Wilkins.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed