Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-18T03:07:20.208Z Has data issue: false hasContentIssue false

Effect of dietary supplements of guar gum and cellulose on intestinal cell proliferation, enzyme levels and sugar transport in the rat

Published online by Cambridge University Press:  09 March 2007

I. T. Johnson
AFRC Food Research Institute, Colney Lane, Norwich NR4 7UA
J. M. Gee
AFRC Food Research Institute, Colney Lane, Norwich NR4 7UA
R. R. Mahoney
AFRC Food Research Institute, Colney Lane, Norwich NR4 7UA
Rights & Permissions [Opens in a new window]


Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Male Wistar rats (approximately 200 g) were given fibre-free semi-synthetic diets containing either sucrose (S) or a sucrose-starch mixture (SS) as the carbohydrate component, or a diet similar to SS containing 40 g guar gum/kg (G), or 100 g cellulose/kg (C). The animals remained healthy, and weight gain after 30 d was similar in all groups.

2. The small intestines of the animals given diet G were significantly longer than those of the other groups, and showed signs of increased mitotic activity and mucosal growth.

3. No significant differences in mucosal enzyme activity were detected between the two fibre-free control groups. Lactase (EC and alkaline phosphatase (EC activities were significantly lower than controls in group G, but were higher in group C.

4. Kinetic analysis of 3-O-methyl glucose uptake by isolated intestine indicated that the maximum transport rate (Vmax) of tissue from group G tended to be lower than from the fibre-free group SS and group C.

5. It is concluded that materials which are classed as dietary fibre but which differ markedly in their physical properties may also differ in the functional changes to which they give rise in the small intestine. These changes may be at least partially mediated by effects on mucosal cell proliferation.

Papers of direct relevance to clinical and Human Nutrition
Copyright © The Nutrition Society 1984



Asp, N. G. & Dahlqvist, A. (1972). Analytical Biochemistry 47, 527538.CrossRefGoogle Scholar
Bailey, N. T. J. (1959). Statistical Methods in Biology, p. 99. London: English Universities Press.Google Scholar
Blackburn, N. A. & Johnson, I. T. (1981). British Journal of Nutrition 46, 239246.CrossRefGoogle Scholar
Blackburn, N. A. & Johnson, I. T. (1983). Pflügers Archiv 397, 144148.CrossRefGoogle Scholar
Blackburn, N. A., Redfern, J. S., Jarjis, H., Holgate, A. M., Hanning, I., Scarpello, J. H. B., Johnson, I. T. & Read, N. W. (1984). Clinical Science 66, 329336.CrossRefGoogle Scholar
Brown, R. C., Kelleher, J. & Losowsky, M. S. (1979). British Journal of Nutrition 42, 357365.CrossRefGoogle Scholar
Cannon, M., Flenniken, A. & Track, H. S. (1980). Life Sciences 27, 13971401.CrossRefGoogle Scholar
Clarke, R. M. (1970). Journal of Anatomy 107, 519529.Google Scholar
Cochran, W. G. & Cox, G. M. (1964). Experimental Designs, p. 76. New York: John Wiley.Google Scholar
Cripps, A. W. & Williams, V. J. (1975). British Journal of Nutrition 33, 1732.CrossRefGoogle Scholar
Dahlqvist, A. (1964). Analytical Biochemistry 7, 1825.CrossRefGoogle Scholar
Dahlqvist, A. (1968). Analytical Biochemistry 22, 99107.CrossRefGoogle Scholar
de Both, N. J., van der Kamp, A. W. M. & van Dongen, J. M. (1975). Differentiation 4, 175182.CrossRefGoogle Scholar
Diamond, J. M. & Karasov, W. H. (1983). Nature 304, 18.CrossRefGoogle Scholar
Duggleby, R. G. (1981). Analytical Biochemistry 110, 918.CrossRefGoogle Scholar
Ebihara, K. & Kiriyama, S. (1982). Nutrition Reports International 26, 193201.Google Scholar
Elsenhans, B., Blume, R. & Caspary, W. F. (1981). American Journal of Clinical Nutrition 34, 18371848.CrossRefGoogle Scholar
Farness, P. L. & Schneeman, B. O. (1982). Journal of Nutrition 112, 13151319.CrossRefGoogle Scholar
Fiszar-Szarfarz, B., Szarfarz, D. & Guevara de Murillo, A. (1981). Analytical Biochemistry 110, 165170.CrossRefGoogle Scholar
Gee, J. M., Blackburn, N. A. & Johnson, I. T. (1983). British Journal of Nutrition 50, 215224.CrossRefGoogle Scholar
Jacobs, L. R. (1983). American Journal of Clinical Nutrition 37, 954960.CrossRefGoogle Scholar
Kinter, W. B. & Wilson, T. H. (1965). Journal of Cell Biology 25, 1939.CrossRefGoogle Scholar
Lowry, O. H., Roseborough, N. J., Farr, A. L. & Randall, R. J. (1951). Journal of Biological Chemistry 193, 265275.CrossRefGoogle Scholar
Mahalko, J. R., Sandstead, H. H., Johnson, L. K., Inman, L. F., Milne, D. B., Warner, R. C. & Haunz, E. A. (1984). American Journal of Clinical Nutrition 39, 2534.CrossRefGoogle Scholar
Munoz, J. M., Sandstead, H. H. & Jacob, R. A. (1979). Diabetes 28, 496502.CrossRefGoogle Scholar
National Research Council (1972). Nutrient Requirements of Laboratory Animals, 2nd ed., p.64. Washington, DC: National Academy of Sciences.Google Scholar
Schwartz, S. E. & Levine, G. D. (1980). Gastroenterology 79, 833836.CrossRefGoogle Scholar
Schwartz, S. E., Levine, G. D. & Starr, C. M. (1982). American Journal of Clinical Nutrition 36, 11021105.CrossRefGoogle Scholar
Schwartz, S. E., Starr, C., Backman, S. & Holtzapple, P. G. (1983). Journal of Lipid Research 24, 746752.CrossRefGoogle Scholar
Sigma Chemical Co. (1980). Sigma Technical Bulletin no. 104. St Louis, Missouri: Sigma Chemical Co.Google Scholar
Sircar, B., Johnson, L. R. & Lichtenberger, L. M. (1983). American Journal of Physiology 244, G327G335.Google Scholar
Southgate, D. A. T. (1969). Journal of the Science of Food and Agriculture 20, 331335.CrossRefGoogle Scholar
Thomsen, L. L. & Tasman-Jones, C. (1982). Digestion 23, 253258.CrossRefGoogle Scholar
Thomsen, L. L., Tasman-Jones, C. & Maher, C. (1983). Digestion 26, 124130.CrossRefGoogle Scholar
Wimber, D. R. & Lamerton, L. F. (1963). Radiation Research 18, 137146.CrossRefGoogle Scholar