Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-29T23:44:35.128Z Has data issue: false hasContentIssue false

Effect of in vitro fermentation using human faecal inoculum on the water-holding capacity of dietary fibre

Published online by Cambridge University Press:  07 March 2008

M. I. McBurney
Affiliation:
Department of Animal Science, Cornell University, Ithaca, New York 14853, USA
P. J. Horvath
Affiliation:
Department of Animal Science, Cornell University, Ithaca, New York 14853, USA
J. L. Jeraci
Affiliation:
Department of Animal Science, Cornell University, Ithaca, New York 14853, USA
P. J. Van soest
Affiliation:
Department of Animal Science, Cornell University, Ithaca, New York 14853, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The water-holding capacities (WHC) of four sources of fibre were measured using dialysis membranes and osmotic-suction pressures of 45, 89 and 178 mosmol/l (1, 2 and 4 atm). At all pressures, pectin had the highest WHC, followed by cabbage (Brussicu oleruceu) and lucerne (Medicago sativu) and then cellulose. A suction pressure of 89 mosmol/l (2 atm) was used in the subsequent fermentation study since it had the lowest standard error of the mean and most closely approximated physiological conditions.

2. The four fibres were anaerobically fermented in vitro with human faecal inoculum for 24 h. The WHC of the fermentation residues were measured. The potential water-holding capacity (PWHC), a function of the extent of fermentability and the WHC of the fermentation residues, was highest for lucerne, followed by cellulose, then cabbage and, finally, pectin. Only the PWHC values ranked the four fibres in the same order as in vivo values.

3. It was concluded that the ethanol-insoluble residues containing unfermented fibre organic matter and microbial organic matter, both of which hold water, should be used to calculate PWHC and to predict the effect of fibre on rate of passage and faecal mass in humans.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1985

References

REFERENCES

Brodribb, A. N. M. & Groves, C. (1978). Gut 19, 6063.CrossRefGoogle Scholar
Burkitt, D. P., Walker, A. R. P. & Painter, N. S. (1972). Lancet ii, 14081412.CrossRefGoogle Scholar
Cummings, J. H., Southgate, D. A. T., Branch, W. J., Wiggins, H. S., Houston, H., Jenkins, D. J. A., Jivraj, T. & Hill, M. J. (1979). British Journal of Nutrition 41, 477485.CrossRefGoogle Scholar
Goering, H. K. & Van soest, P. J. (1970). Forage fiber analyses (apparatus, reagents, procedures, and applications). Agriculture Handbook No. 379. Agricultural research service, united states department of agriculture.Google Scholar
Goodhart, R. S. & Shils, M. E. (1980). Modern nutrition in health and disease, p. 1370, 6th ed.Philadelphia: Lea & febiger.Google Scholar
Holloway, W. D., Tasman-Jones, C. & Maher, K. (1983). American Journal of Clinical Nutrition 37, 253255.CrossRefGoogle Scholar
Horvath, P. J. (1984). The measurement of dietary fiber and the effects of fermentation. PhD Thesis, Cornell university, Ithaca, NY.Google Scholar
Jeraci, J. L. (1981). Interactions between rumen or human fecal inocula and fiber substrates. MS Thesis, Cornell university, Ithaca, NY.Google Scholar
Kay, R. M. (1982). Journal of Lipid Research 23, 221242.CrossRefGoogle Scholar
McConnell, A. A., Eastwood, M. A. & Mitchell, W. D. (1974). Journal of the Science of Food and Agriculture 25, 14571464.CrossRefGoogle Scholar
Mailman, D. S. (1981). In Gastrointestinal physiology, pp. 107122 [Johnson, L. R., editor]. St louisMo:, C. V. Mosby Co.Google Scholar
Phillips, S. F. & Giller, J. (1973). Journal of Laboratory and Clinical Medicine 81, 733746.Google Scholar
Robertson, J. A. & Eastwood, M. A. (1981 a). Journal of the Science of Food and Agriculture 32, 819825.CrossRefGoogle Scholar
Robertson, J. A. & Eastwood, M. A. (1981 b). British Journal of Nutrition 46, 247255.CrossRefGoogle Scholar
Robertson, J. A., Eastwood, M. A. & Yeoman, M. M. (1980). Journal of the Science of Food and Agriculture 31, 633638.CrossRefGoogle Scholar
Robertson, J. B. & Van soest, P. J. (1981). In The analysis of dietary fiber in food, pp. 123158 [James, W. P. T. and Theander, O., editors]. New york: Marcel dekker.Google Scholar
Snedecor, G. W. & Cochran, W. G. (1976). Statistical methods, 6th ed.Ames, Iowa: Iowa state university press.Google Scholar
Stasse-Wolthuis, M., Albers, H. F. F., Van Jeversen, J. G. C., Wil de Jong, J., Hantvast, J. G. A. J., Hermas, R. J. J., Katan, M. B., Brydon, W. G. & Eastwood, M. A. (1980). American Journal of Clinical Nutrition 33, 17451757.CrossRefGoogle Scholar
Stephen, A. M. & Cummings, J. H. (1979). Gut 20, 722729.CrossRefGoogle Scholar
Stephen, A. M. & Cummings, J. H. (1980). Nature 284, 283284.CrossRefGoogle Scholar
Van Dokkum, W., Pikaar, N. A. & Thissen, J. T. N. M. (1983). British Journal of Nutrition 50, 6174.CrossRefGoogle Scholar
Van Soest, P. J., Robertson, J. B., Roe, D. A., Rivers, J., Lewis, B. A. & Hackler, L. C. (1978). Cornell Nutrition Conference, pp. 512.Google Scholar
Williams, R. D. & Olmstead, W. H. (1936). Annals of Internal Medicine 10, 717.Google Scholar