Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T12:39:45.983Z Has data issue: false hasContentIssue false

The effect of indigestible particles on digestive transit time and colonic motility in dogs and pigs

Published online by Cambridge University Press:  24 July 2007

Ch. Cherbut
Affiliation:
Laboratoire de Physiologie, Ecole Nationale Vétérinaire, 31076 Toulouse Cédex, France
Y. Ruckebusch
Affiliation:
Laboratoire de Physiologie, Ecole Nationale Vétérinaire, 31076 Toulouse Cédex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The myoelectric activity of the colon was examined in three dogs and three pigs when they were given a basal diet or a basal diet plus indigestible particles (IP), 2 mm in diameter, at 100 g/kg dry matter. The mean retention time was determined using coloured discs as a marker added to the daily meal.

2. Colonic electromyograms of dogs and pigs given IP revealed a 30% reduction in the number of long spike bursts (LSB) when compared with controls. The other components, propulsive migrating spike bursts (MSB) or non-propulsive short spike bursts (SSB), were unchanged. Mean retention time was decreased from 28.6 h to 17.6 h in dogs and from 129 h to 94.2 h in pigs.

3. These changes developed progressively during 3–4 d in both species, suggesting that the reduction in motor activity was an adaptation to the changes in bulk contents.

4. From the decreased motility of the colon linked to the reduction of LSB and paralleled by an increased transit time, it was concluded that one of the functions of the LSB is to impede the passage of digesta.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1985

References

REFERENCES

Banta, C. A., Clemens, E. T., Krinsky, M. M. & Sheffy, B. E. (1979). Journal of Nutrition 109, 15921600.CrossRefGoogle Scholar
Bardon, T. & Fioramonti, J. (1983). British Journal of Nutrition 50, 685690.CrossRefGoogle Scholar
Burrows, C. F. & Merritt, A. M. (1983). American Journal of Physiology 245, G301–G306.Google Scholar
Castle, E. J. & Castle, M. E. (1956). Journal of Agricultural Science, Cambridge 47, 196204.CrossRefGoogle Scholar
Christensen, J., Anuras, S. & Hauser, R. L. (1974). Gastroenterology 66, 240247.CrossRefGoogle Scholar
Ehrlein, H. J., Reich, H. & Schwinger, M. (1982). Quarterly Journal of Experimental Physiology 67, 407417.CrossRefGoogle Scholar
Fioramonti, J. & Buéno, L. (1980). British Journal of Nutrition 43, 155161.CrossRefGoogle Scholar
Harvey, R. F., Pomare, E. W. & Heaton, K. W. (1973). Lancet i, 12781280.CrossRefGoogle Scholar
Hellendoom, E. W. (1978). In Topics in Dietary Fiber Research, pp. 127168 [Spiller, G. A., editor]. New York: Plenum Press.CrossRefGoogle Scholar
Kirwan, W. O., Smith, A. N., McConnell, A. A., Mitchell, W. A. & Eastwood, M. A. (1974). British Medical Journal 4, 187199.CrossRefGoogle Scholar
Latour, A. (1973). Annales de Recherches Vétérinaires 4, 347353.Google Scholar
Latour, A. & Ferré, J. P. (1985). Journal of Biomedical Engineering 6, (In the Press).Google Scholar
Ruckebusch, Y. (1970). Journal of Physiology 210, 857882.CrossRefGoogle Scholar
Ruckebusch, Y. & Buéno, L. (1977). Gastroenterology 73, 13091314.CrossRefGoogle Scholar
Ruckebusch, Y. & Fioramonti, J. (1980). Zentralblatt für Veterinärmedizin A 7, 18.Google Scholar
Sarna, S. K., Condon, R. & Cowles, V. (1984). American Journal of Physiology 246, G355–G365.Google Scholar
Stephen, A. M. & Cummings, J. H. (1979). Gut 20, 722729.CrossRefGoogle Scholar
Tucker, H. J., Snape, W. J. & Cohen, S. (1979). American Journal of Physiology 237, E383–E388.Google Scholar