Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-19T08:22:16.925Z Has data issue: false hasContentIssue false

Effect of insulin on hind-limb and whole-body leucine and protein metabolism in fed and fasted lambs

Published online by Cambridge University Press:  09 March 2007

V. H. Oddy
Affiliation:
Agriculture and Food Research Council Institute of Animal Physiology, Babraham, Cambridge CB2 4AT
D. B. Lindsay
Affiliation:
Agriculture and Food Research Council Institute of Animal Physiology, Babraham, Cambridge CB2 4AT
P. J. Barker
Affiliation:
Agriculture and Food Research Council Institute of Animal Physiology, Babraham, Cambridge CB2 4AT
A. J. Northrop
Affiliation:
Agriculture and Food Research Council Institute of Animal Physiology, Babraham, Cambridge CB2 4AT
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A combination of isotope-dilution and arterio-venous difference techniques was used to determine rates of leucine metabolism and protein synthesis and degradation in a hind-limb preparation (predominantly muscle) and the whole body of eight lambs fed on milk to appetite and eight lambs fasted from 24 to 48 h.

2. Compared with fed lambs, fasted lambs showed decreased rates of protein synthesis in both whole body and hind-limb, and in hind-limb muscle, elevated rates of protein degradation.

3. The effects of two rates of insulin infusion on whole-body and hind-limb-muscle leucine metabolism, and in turn on protein metabolism, were determined. Insulin had no significant effect on leucine flux or oxidation (and hence protein synthesis and degradation) in whole-body or hind-limb muscle of fed lambs. In fasted lambs insulin progressively reduced arterial leucine concentration and whole-body leucine flux and oxidation, indicating a reduction in both protein synthesis and degradation. Insulin reduced the rate of leucine efflux from hind-limb muscle, which was followed by a reduction in leucine uptake. Insulin increased hind-limb-muscle glucose uptake in both fed and fasted lambs.

4. On the basis that hind-limb muscle was representative of skeletal muscle in general, we estimated that muscle accounted for the same percentage (about 27) of whole-body protein synthesis in both fed and fasted lambs. This percentage was unaffected by infusion of insulin, although the absolute rates differed in fed and fasted lambs.

Type
General Nutrition papers
Copyright
Copyright © The Nutrition Society 1987

References

REFERENCES

Agricultural Research Council (1980). The Nutrient Requirements of Ruminant Livestock. Slough: Commonwealth Agricultural Bureaux.Google Scholar
Albertese, E. C., Pain, V. M. & Garlick, P. J. (1979). Proceedings of the Nutrition Society 39, 19A.Google Scholar
Andres, R., Baltzan, M. A., Cadoe, G. & Zierler, K. L. (1962). Journal of Clinical Investigation 41, 108115.CrossRefGoogle Scholar
Domanski, A., Lindsay, D. B. & Setchell, B. P. (1974). Journal of Physiology 242, 28P29P.Google Scholar
Emery, P. W., Cotellessa, L., Holness, M. & Rennie, M. J. (1983). Proceedings of the Nutrition Society 42, 136A.Google Scholar
Fukagawa, N. K., Minaker, K. L., Rowe, J. W., Goodman, M. N., Matthews, D. E., Bier, D. M. & Young, V. R. (1985). Journal of Clinical Investigation 76, 23062311.Google Scholar
Fuller, M. F., Weekes, T. E. C., Cadenhead, A. & Bruce, J. B. (1977). British Journal of Nutrition 38, 489496.Google Scholar
Garlick, P. J., Fern, M. & Preedy, V. R. (1983). Biochemical Journal 210, 669676.Google Scholar
Garlick, P. J., McNurlan, M. A., McHardy, K. G., Reeds, P. J., Preedy, V. R. & Clugston, G. A. (1986). In Proceedings of the XIII International Nutrition Congress, pp. 374377 [Taylor, T. G. and Jenkins, N. K., editors]. London: John Libbey.Google Scholar
Gutmann, I. & Wahlefeld, A. W. (1974). In Methods of Enzymatic Analysis, vol. 3, pp. 14641468 [Bergmeyer, H. U., editor]. New York: Academic Press.Google Scholar
Horn, J., Stern, M. D. R., Young, M. & Noakes, D. E. (1983). Research in Veterinary Science 35, 3541.Google Scholar
Jackson, A. A. (1986). In Proceedings of the XIII International Congress of Nutrition, pp. 403–409 [Taylor, T. G. and Jenkins, N. K., editors]. London: John Libbey.Google Scholar
Jarrett, I. G. & Potter, B. J. (1953). Australian Journal of Experimental Biology and Medicine 31, 311318.Google Scholar
Katz, J. (1982). Federation Proceedings 41, 123128.Google Scholar
Katz, J., Okajima, F., Chenoweth, M. & Dunn, A. (1981). Biochemical Journal 194, 513524.Google Scholar
Lindsay, D. B. (1982). Federation Proceedings 41, 25502554.Google Scholar
Mathews, D. E., Schwarz, H. P., Yang, R. D., Motil, K. J., Young, V. R. & Bier, D. M. (1982). Metabolism 31, 11051112.CrossRefGoogle Scholar
Miles, J. M., Nissen, S. L., Gerich, J. E. & Haymond, M. W. (1984). American Journal of Physiology 247, E166–E172.Google Scholar
Millward, D. J., Garlick, P. J., Nnanyelugo, D. O. & Waterlow, J. C. (1976). Biochemical Journal 156, 185188.Google Scholar
Nair, K. S. & Halliday, D. (1985). In Substrate and Energy Metabolism in Man, pp. 195202 [Garrow, J. S. and Halliday, D., editors] London: John Libbey.Google Scholar
Nissen, S. & Ostaszewski, P. (1985). British Journal of Nutrition 54, 705712.Google Scholar
Obled, C., Arnal, M. & Fauconneau, G. (1983). In 4th International Symposium of Protein Metabolism and Nutrition, pp. 2327 [Arnal, M., Pion, R. and Bonin, D., editors]. Paris: INRA.Google Scholar
Oddy, V. H. (1986). Muscle protein metabolism: measurement and manipulation in lambs. PhD thesis, University of Cambridge.Google Scholar
Oddy, V. H., Brown, B. W. & Jones, A. W. (1981). Australian Journal of Biological Sciences 34, 419425.Google Scholar
Oddy, V. H., Gooden, J. M. & Annison, E. F. (1984). Australian Journal of Biological Sciences 37, 375388.CrossRefGoogle Scholar
Oddy, V. H. & Lindsay, D. B. (1986). Biochemical Journal 233, 417425.CrossRefGoogle Scholar
Pain, V. M., Albertese, E. C. & Garlick, P. J. (1983). American Journal of Physiology 245, E604–E610.Google Scholar
Palsson, H. & Verges, J. B. (1952). Journal of Agricultural Science, Cambridge 42, 192.CrossRefGoogle Scholar
Pappenheimer, J. R. & Setchell, B. P. (1972). Journal of Physiology 226, 48P50P.Google Scholar
Patureau-Mirand, P., Bernard, O., Prugnaud, J. & Arnal, M. (1985). Reproduction Nutrition Developpement 25, 10611073.Google Scholar
Pell, J. M., Calderone, E. M. & Bergman, E. N. (1983). Biochemical Journal 214, 10151018.Google Scholar
Pell, J. M., Calderone, E. M. & Bergman, E. N. (1986). Metabolism 35, 10051016.CrossRefGoogle ScholarPubMed
Pozefsky, T., Felig, P., Tobin, J. D., Soeldner, J. S. & Cahill, G. F. (1969). Journal of Clinical Investigation 48, 22732282.Google Scholar
Preedy, V. R., McNurlan, M. A. & Garlick, P. J. (1983). British Journal of Nutrition 49, 517523.CrossRefGoogle Scholar
Prior, R. L. & Smith, S. B. (1982). Federation Proceedings 40, 25452549.Google Scholar
Rabinowitz, D. & Zierler, K. L. (1962). Journal of Clinical Investigation 41, 21912197.CrossRefGoogle Scholar
Reeds, P. J., Hay, S. M., Glennie, R. T., Mackie, W. S. & Garlick, P. J. (1985). Biochemical Journal 227, 255261.CrossRefGoogle Scholar
Rennie, M. J., Edwards, R. H. T., Halliday, D., Matthews, D. E., Wolman, S. L. & Millward, D. J. (1982). Clinical Science 63, 519523.Google Scholar
Rerat, A., Corring, T. & Laplace, J. P (1976). In Protein Metaholism and Nutrition, European Association of Animal Production Publication no. 16, pp. 97138 [Cole, D. J. A., Boorman, K. N., Buttery, P. J., Lewis, D.Neele, R. J. and Swan, H., editors]. London: Butterworths.Google Scholar
Schwenk, W. F., Beaufrere, B. & Haymond, M. W. (1985). American Journal of Physiology 249, E646–E650.Google Scholar
Setchell, B. P. & Waites, G. M. (1962). Journal of Physiology 164, 200209.Google Scholar
Sumner, R. & Weekes, T. E. C. (1983). Proceedings of the Nutrition Society 42, 39A.Google Scholar
Tagari, H. & Bergman, E. N. (1978). Journal of Nutrition 108, 790803.Google Scholar
Teleni, E. & Annison, E. F. (1986). Australian Journal of Biological Sciences 39, 271281.Google Scholar
Walker, D. M. (1967). British Journal of Nutrition 21, 289308.Google Scholar
Waterlow, J. C., Garlick, P. J. & Millward, D. J. (1978). Protein Turnover in Mammalian Tissues and in the Whole Body. Amsterdam: North-Holland.Google Scholar
Werner, W., Rey, H.-G. & Wielinger, H. (1970) Zeitschriftfur Analytische Chemie 252, 224228.CrossRefGoogle Scholar
Whitelaw, F. G., Brockway, J. M. & Reid, R. S. (1972). Quarterly Journal of Experimental Physiology 57, 3755.Google Scholar
Williams, A. P. (1978) Journal of Agricultural Science, Cambridge 90, 617624.CrossRefGoogle Scholar
Wool, I. R. (1960). American Journal of Physiology 198, 5456.CrossRefGoogle Scholar
Wootton, R. (1985). In Substrate and Energy Metabolism in Man, pp. 1626 [Garrow, J. S. and Halliday, D., editors]. London: John Libbey.Google Scholar