Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-06T09:06:35.652Z Has data issue: false hasContentIssue false

The effect of intravenous infusions of sterculic acid on milk fat synthesis

Published online by Cambridge University Press:  09 March 2007

R. Bickerstaffe
Affiliation:
Unilever Research Laboratory, Colworth House, Shambrook, Bedford
A. R. Johnson
Affiliation:
Unilever Research Laboratory, Colworth House, Shambrook, Bedford
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effects of intraduodenal infusions of sterculic acid, a naturally occurring inhibitor of desaturase activity, on the yield and composition of milk were examined in a lactating goat.

2. Sterculic acid administration increased the percentage of stearic acid in milk fat, reflecting inhibition of mammary desaturase activity. Milk yield was not affected, but milk fat output decreased. Possible explanations are discussed.

3. No evidence was obtained for an alternative pathway of oleic acid synthesis from acetate.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1972

References

Allen, E., Johnson, A. R., Fogerty, A. C., Pearson, J. A. & Shenstone, F. S. (1967). Lipids 2, 419.CrossRefGoogle Scholar
Annison, E. F., Linzell, J. L., Fazakerley, S. & Nichols, B. W. (1967). Biochem. J. 102, 637.CrossRefGoogle Scholar
Annison, E. F., Linzell, J. L. & West, C. E. (1968). J. Physiol. Lond. 197, 445.CrossRefGoogle Scholar
Bickerstaffc, R. & Annison, E. F. (1968). Biochem. J. 108, 471.Google Scholar
Biclrerstaffe, R. & Annison, E. F. (1970). Comp. Biochem. Physiol. 35, 653.CrossRefGoogle Scholar
Bishop, C., Davies, T., Glascock, R. F. & Welch, V. A. (1969). Biochem. J. 113, 629.CrossRefGoogle Scholar
Coleman, E. C. & Friedman, L. (1971). J. agric. Fd Chem. 19, 224.CrossRefGoogle Scholar
Donaldson, W. E. (1967 a). Biochem. biophys. Res. Commun. 26, 539.CrossRefGoogle Scholar
Donaldson, W. E. (1967 b). Biochem. biophys. Res. Commun. 27, 681.CrossRefGoogle Scholar
Freeman, C. P., Noakes, D. E. & Annison, E. F. (1970). Br. J. Nutr. 24, 705.CrossRefGoogle Scholar
James, A. T., Harris, P. & Bezard, J. (1968). Eur. J. Biochem. 3, 318.CrossRefGoogle Scholar
Johnson, A. R., Murray, K. E., Fogerty, A. C., Kennett, B. H., Pearson, J. A. & Shenstone, F. S. (1967). Lipids 2, 316.CrossRefGoogle Scholar
Kircher, H. W. (1964). J. Am. Oi. Chem. Sol. 41, 4.CrossRefGoogle Scholar
Lauryssens, M., Verbeke, R., Peeters, G., Garton, G. A., Lough, A. K. & Duncan, W. R. H. (1960). Arch. int. Physiol. Biochim. 68, 511.Google Scholar
Linzell, J. L. (1960). J. Physiol., Lond. 153, 492.CrossRefGoogle Scholar
Linzell, J. L. (1966). J. Dair. Sci. 59, 307.CrossRefGoogle Scholar
Linzell, J. L. (1968). Proc. Nutr. Soc. 27, 44.CrossRefGoogle Scholar
Linzell, J. L. (1971). InLactation p.261 [Falconer, I. R. editor]. London: Butterwarths.Google Scholar
Pearson, J. A., Fogerty, A. C., Johnson, A. R. & Shenstone, F. S. (1972). Lipids. (In the press.)Google Scholar
Raju, P. K. & Reiser, R. (1967). J. biol. Chem. 242, 379.CrossRefGoogle Scholar
Raju, P. K. & Reiser, R. (1969). Biochim. biophys. Acta. 176, 48.CrossRefGoogle Scholar