Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T13:48:58.963Z Has data issue: false hasContentIssue false

Effect of oat saponins and different types of dietary fibre on the digestion of carbohydrates

Published online by Cambridge University Press:  09 March 2007

G. Önning
Affiliation:
Department of Applied Nutrition and Food Chemistry, Lund University, PO Box 124, S-221 00 Lund, Sweden
N.-G. Asp
Affiliation:
Department of Applied Nutrition and Food Chemistry, Lund University, PO Box 124, S-221 00 Lund, Sweden
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effects of oat saponins (a mixture of avenacosides A and B) and dietary fibre (cellulose and guar gum) on the disaccharidase activities in the proximal small intestine of the rat were investigated. The influence of avenacosides A and B on the activity of disaccharidases and α-amylase (EC 3·2·1·1) was also studied in vitro. In vivo, oat diets with three avenacoside contents (negligible, normal and twice normal) were used. No significant differences in sucrase (EC 3·2·1·48), maltase (EC 3·2·1·20), trehalase (EC 3·2·1·28) and lactase (EC 3·2·1·21) activities were found between the oat groups after 19 d feeding. The rats that were given cellulose tended to have higher disaccharidase activities compared with the other groups. The avenacosides inhibited the lactase activity significantly in vitro while no or small effects on the other disaccharidases were found. In contrast, the in vitro hydrolysis of starch by α-amylase was increased in the presence of saponins, probably due to their detergent effect. Thus, the in vitro studies showed that the avenacosides could influence the enzyme activities. In vivo, these effects are probably minor due to the low avenacoside concentrations found in oats.

Type
Effects of dietary fibre in rats
Copyright
Copyright © The Nutrition Society 1995

References

REFERENCES

Asp, N.-G. & Dahlqvist, A. (1968). Rat small-intestinal β-galactosidases. Kinetic studies with three separated fractions. Biochemical Journal 110, 143150.CrossRefGoogle ScholarPubMed
Asp, N.-G., Johansson, C.-G. & Siljeström, M. (1983). Rapid enzymatic assay of insoluble and soluble dietary fibre. Journal of Agricultural and Food Chemistry 31, 476482.CrossRefGoogle Scholar
Björck, I. & Nyman, M. (1987). In vitro effects of phytic acid and polyphenols on starch digestion and fiber degradation. Journal of Food Science 52, 15881594.CrossRefGoogle Scholar
Chun, W., Bamba, T. & Hosoda, S. (1989). Effect of pectin, a soluble dietary fibre, on functional and morphological parameters of the small intestine in rats. Digestion 42, 2229.CrossRefGoogle ScholarPubMed
Dahlqvist, A. (1968). Assay of intestinal disaccharidases. Analytical Biochemistry 22, 99107.CrossRefGoogle ScholarPubMed
Farness, P. L. & Schneeman, B. O. (1982). Effects of dietary cellulose, pectin and oatbran on the small intestine in the rat. Journal of Nutrition 112, 13151319.CrossRefGoogle Scholar
Gee, J. M. & Johnson, I. T. (1988). Interactions between hemolytic saponins, bile salts and small intestinal mucosa in the rat. Journal of Nutrition 118, 13911397.CrossRefGoogle ScholarPubMed
Gestetner, B., Birk, Y. & Tencer, Y. (1968). Soyabean saponins. Fate of ingested soyabean saponins and the physiological aspect of their hemolytic activity. Journal of Agricultural and Food Chemistry 16, 10311035.CrossRefGoogle Scholar
Holm, J. & Björck, I. (1988). Effects of thermal processing of wheat on starch: II. Enzymic availability. Journal of Cereal Science 8, 261268.CrossRefGoogle Scholar
Hostettler, F., Borel, E. & Deuel, H. (1951). Über die Reduction der 3,5-Dinitrosalicylsäure durch Zucker (Reduction of 3,5-dinitrosalicylic acid by sugars). Helvetica Chimica Acta 34, 21322139.CrossRefGoogle Scholar
Johnson, I. T. & Gee, J. M. (1986). Gastrointestinal adaptation in response to soluble non-available polysaccharides in the rat. British Journal of Nutrition 55, 497505.CrossRefGoogle ScholarPubMed
Johnson, I. T., Gee, J. M. & Mahoney, R. R. (1984). Effect of dietary supplements of guar gum and cellulose on intestinal cell proliferation, enzyme levels and sugar transport in the rat. British Journal of Nutrition 52, 477487.CrossRefGoogle ScholarPubMed
Kawano-Takahashi, Y., Ohminami, H., Okuda, H., Kitagawa, I., Yoshikawa, W., Arichi, S. & Hayashi, T. (1986). Effect of soya saponins on gold thioglucose (GTG)-induced obese mice. International Journal of Obesity 10, 293302.Google Scholar
Livingston, A. L., Knuckles, B. E., Teuber, L. R., Hesterman, O. B. & Tsai, L. S. (1984). Minimizing the saponin content of alfalfa sprouts and leaf protein concentrates. In Nutritional and Toxicological Aspects of Food Safety, pp. 253268 [Friedman, M. editor]. New York: Plenum Press.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
Önning, G. & Asp, N.-G. (1993). Analysis of saponins in oat kernels. Food Chemistry 48, 301305.CrossRefGoogle Scholar
Önning, G. & Asp, N.-G. (1995). Effect of oat saponins on plasma and liver lipids in gerbils and rats. British Journal of Nutrition 73, 275286.CrossRefGoogle ScholarPubMed
Önning, G., Asp, N.-G. & Sivik, B. (1993). Saponin content in different oat varieties and in different fractions of oat grain. Food Chemistry 48, 251254.CrossRefGoogle Scholar
Price, K. R., Curl, C. L. & Fenwick, C. R. (1986). The saponin content and sapogenol composition of the seed of 13 varieties of legume. Journal of the Science of Food and Agriculture 37, 11851191.CrossRefGoogle Scholar
Price, K. R., Johnson, I. T. & Fenwick, G. R. (1987). The chemistry and biological significance of saponins in foods and feedingstuffs. CRC Critical Reviews in Food Science and Nutrition 26, 27135.CrossRefGoogle ScholarPubMed
Ridout, C. L., Price, K. R., DuPont, M. S., Parker, M. L. & Fenwick, G. R. (1991). Quinoa saponins - analysis and preliminary investigations into the effects of reduction by processing. Journal of the Science of Food and Agriculture 54, 165176.CrossRefGoogle Scholar
Ruales, J. & Nair, B. M. (1994). Properties of starch and dietary fibre in raw and processed quinoa (Chenopodium quinoa, Willd) seeds. Plant Foods for Human Nutrition 45, 223246.CrossRefGoogle ScholarPubMed
Schneeman, B. O. & Gallaher, D. (1993). Effects of dietary fiber on digestive enzymes. In CRC Handbook of Dietary Fiber in Human Nutrition, pp. 377385 [Spiller, G. A. editor]. Florida: CRC Press Inc.Google Scholar
Sidhu, G. S., Upson, B. & Malinow, M. R. (1987). Effects of soy saponins and tigogenin cellobioside on intestinal uptake of cholesterol, cholate and glucose. Nutrition Reports International 35, 615623.Google Scholar
Southon, S., Johnson, I. T., Gee, J. M. & Price, K. R. (1988). The effect of gypsophila saponins in the diet on mineral status and plasma cholesterol concentration in the rat. British Journal of Nutrition 59, 4955.CrossRefGoogle ScholarPubMed
Story, J. A., LePage, S. L., Petro, M. S., West, L. G., Cassidy, M. M., Lightfoot, F. G. & Vahoney, G. V. (1984). Interactions of alfalfa plant and sprout saponins with cholesterol in vitro and in cholesterol-fed rats. American Journal of Clinical Nutrition 39, 917929.CrossRefGoogle ScholarPubMed
Thomsen, L. L. & Tasman-Jones, C. (1982). Disaccharidase levels of the rat jejunum are altered by dietary fibre. Digestion 23, 253258.CrossRefGoogle ScholarPubMed
Thomsen, L. L., Tasman-Jones, C. & Maher, C. (1983). Effects of dietary fat and gel-forming substances on rat jejunal disaccharidase levels. Digestion 26, 124130.CrossRefGoogle ScholarPubMed
Tschesche, R. & Lauren, P. (1971). Avenacosid B, ein sweites bisdesmosidisches Steroidsaponin aus Avena sativa (Avenacoside B, a second bisdesmosidic steroid saponin from Avena sativa). Chemische Berichtung 104, 35493555.CrossRefGoogle Scholar
Tschesche, R., Tauscher, M., Fehlhaber, H.-W. & Wulff, G. (1969). Avenacosid A, ein bisdesmosidisches Steroidsaponin aus Avena sativa (Avenacoside A, a bisdesmosidic steroid saponin from Avena sativa). Chemische Berichtung 102, 20722082.CrossRefGoogle Scholar
Tschesche, R. & Wiemann, W. (1977). Desglucoavenacosid A und B, biologisch aktive Nuatigeninglycoside (Desglucoavenacoside A and B, biologically active nuatigenin glucosides). Chemische Berichtung 110, 24162423.CrossRefGoogle Scholar