Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-28T10:30:01.465Z Has data issue: false hasContentIssue false

Effects of niacin on apo A1 and B levels: a systematic review and meta-analysis of randomised controlled trials

Published online by Cambridge University Press:  19 December 2023

Somayeh Saboori
Affiliation:
Oxford Brookes Centre for Nutrition and Health (OxBCNH), Department of Sport, Health Sciences and Social Work, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
Esmaeil Yousefi Rad
Affiliation:
Oxford Brookes Centre for Nutrition and Health (OxBCNH), Department of Sport, Health Sciences and Social Work, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
Jonathan Tammam
Affiliation:
Oxford Brookes Centre for Nutrition and Health (OxBCNH), Department of Sport, Health Sciences and Social Work, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
Pariyarath Sangeetha Thondre
Affiliation:
Oxford Brookes Centre for Nutrition and Health (OxBCNH), Department of Sport, Health Sciences and Social Work, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
Shelly Coe*
Affiliation:
Oxford Brookes Centre for Nutrition and Health (OxBCNH), Department of Sport, Health Sciences and Social Work, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
*
*Corresponding author: Dr Shelly Coe, email scoe@brookes.ac.UK

Abstract

Niacin has been investigated for its potential impact on lipid metabolism and cardiovascular health. This meta-analysis aims to systematically evaluate the effects of niacin interventions on apo A1 and apo B levels, key regulators of lipoprotein metabolism and markers of cardiovascular risk. A comprehensive search of the literature was performed on five databases of PubMed, Scopus, Web of Science, Embase and Cochrane library, from inception up to 15 July 2023. This search identified 1452 publications, from which twelve randomised controlled trials met the inclusion criteria. The intervention dosages ranged from 500 to 3000 mg/d, and the study durations spanned from 6 to 102·8 weeks. The niacin intervention demonstrated a significant reduction in apo B levels (weighted mean differences (WMD): −24·37 mg/dl, P = 0·01). Subgroup analyses indicated that intervention duration played a role, with trials of ≤ 16 weeks showing a greater reduction in apo B. Regarding apo A1, niacin significantly increased its levels (WMD: 8·23 mg/dl, P < 0·001). Subgroup analyses revealed that the beneficial effects of niacin on apo A1 were observed at a dosage of > 1500 mg/d (P < 0·001), and extended-release niacin was more effective compared with other forms (P < 0·001). According to the Begg’s regression test, no publication bias was observed in this systematic review and meta-analysis. This meta-analysis highlights niacin’s potential role in improving lipid profiles and cardiovascular health. Further well-designed clinical trials are needed to elucidate and confirm optimal dosages and durations of niacin interventions for influencing apo A1 and B.

Type
Systematic Review and Meta-Analysis
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cd, M (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3, 20112030.Google Scholar
Roth, GA, Mensah, GA, Johnson, CO, et al. (2020) Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am Coll Cardiol 76, 29823021.CrossRefGoogle ScholarPubMed
Anand, SS, Hawkes, C, De Souza, RJ, et al. (2015) Food consumption and its impact on cardiovascular disease: importance of solutions focused on the globalized food system: a report from the workshop convened by the World Heart Federation. J Am Coll Cardiol 66, 15901614.CrossRefGoogle Scholar
Artinian, NT, Fletcher, GF, Mozaffarian, D, et al. (2010) Interventions to promote physical activity and dietary lifestyle changes for cardiovascular risk factor reduction in adults: a scientific statement from the American Heart Association. Circulation 122, 406441.CrossRefGoogle ScholarPubMed
Mendis, S, Puska, P, Norrving, BE, et al. (2011) Global Atlas on Cardiovascular Disease Prevention and Control. Geneva: World Health Organization.Google Scholar
Arca, M, Pigna, G & Favoccia, C (2012) Mechanisms of diabetic dyslipidemia: relevance for atherogenesis. Curr Vasc Pharmacol 10, 684686.CrossRefGoogle ScholarPubMed
Carr, SS, Hooper, AJ, Sullivan, DR, et al. (2019) Non-HDL-cholesterol and apolipoprotein B compared with LDL-cholesterol in atherosclerotic cardiovascular disease risk assessment. Pathology 51, 148154.CrossRefGoogle ScholarPubMed
Walldius, G, Jungner, I, Holme, I, et al. (2001) High apolipoprotein B, low apolipoprotein AI, and improvement in the prediction of fatal myocardial infarction (AMORIS study): a prospective study. Lancet 358, 20262033.CrossRefGoogle ScholarPubMed
Karthikeyan, G, Teo, KK, Islam, S, et al. (2009) Lipid profile, plasma apolipoproteins, and risk of a first myocardial infarction among Asians: an analysis from the INTERHEART Study. J Am Coll Cardiol 53, 244253.CrossRefGoogle ScholarPubMed
Walldius, G & Jungner, I (2005) Rationale for using apolipoprotein B and apolipoprotein AI as indicators of cardiac risk and as targets for lipid-lowering therapy. Eur Heart J 26, 210212.CrossRefGoogle ScholarPubMed
Cicero, AFG, Colletti, A, Bajraktari, G, et al. (2017) Lipid-lowering nutraceuticals in clinical practice: position paper from an international lipid expert panel. Nutr Rev 75, 731767.CrossRefGoogle ScholarPubMed
Shidfar, F, Aghasi, M, Vafa, M, et al. (2010) Effects of combination of zinc and vitamin A supplementation on serum fasting blood sugar, insulin, apoprotein B and apoprotein A-I in patients with type I diabetes. Int J Food Sci Nutr 61, 182191.CrossRefGoogle ScholarPubMed
Shidfar, F, Ebrahimi, SS, Hosseini, S, et al. (2012) The effects of berberis vulgaris fruit extract on serum lipoproteins, apoB, apoA-I, homocysteine, glycemic control and total antioxidant capacity in type 2 diabetic patients. Iran J Pharm Res 11, 643652.Google ScholarPubMed
Shidfar, F, Keshavarz, A, Hosseyni, S, et al. (2008) Effects of n-3 fatty acid supplements on serum lipids, apolipoproteins and malondialdehyde in type 2 diabetes patients. East Mediterr Health J 14, 305313.Google ScholarPubMed
Hamedi-Kalajahi, F, Zarezadeh, M, Dehghani, A, et al. (2021) A systematic review and meta-analysis on the impact of oral vitamin E supplementation on apolipoproteins A1 and B100. Clin Nutr ESPEN 46, 106114.CrossRefGoogle ScholarPubMed
Radkhah, N, Shabbidar, S, Zarezadeh, M, et al. (2021) Effects of vitamin D supplementation on apolipoprotein A1 and B100 levels in adults: systematic review and meta-analysis of controlled clinical trials. J Cardiovasc Thoracic Res 13, 190.CrossRefGoogle ScholarPubMed
Florentin, M, N Liberopoulos, E, Kei, A, et al. (2011) Pleiotropic effects of nicotinic acid: beyond high density lipoprotein cholesterol elevation. Curr Vasc Pharmacol 9, 385400.CrossRefGoogle ScholarPubMed
Hamilton, SJ, Chew, GT, Davis, TM, et al. (2010) Niacin improves small artery vasodilatory function and compliance in statin-treated type 2 diabetic patients. Diabetes Vasc Dis Res 7, 296299.CrossRefGoogle ScholarPubMed
Ruparelia, N, Digby, JE & Choudhury, RP (2011) Effects of niacin on atherosclerosis and vascular function. Curr Opin Cardiol 26, 66.CrossRefGoogle ScholarPubMed
Al-Mohaissen, M, Pun, S & Frohlich, J (2010) Niacin: from mechanisms of action to therapeutic uses. Mini Rev Med Chem 10, 204217.CrossRefGoogle ScholarPubMed
Superko, HR, McGovern, ME, Raul, E, et al. (2004) Differential effect of two nicotinic acid preparations on low-density lipoprotein subclass distribution in patients classified as low-density lipoprotein pattern A, B, or I. Am J Cardiol 94, 588594.CrossRefGoogle ScholarPubMed
Scoffone, HM, Krajewski, M, Zorca, S, et al. (2013) Effect of extended-release niacin on serum lipids and on endothelial function in adults with sickle cell anemia and low high-density lipoprotein cholesterol levels. Am J Cardiol 112, 14991504.CrossRefGoogle ScholarPubMed
Yasmeen, G, Dawani, ML & Mahboob, T (2014) Adding niacin with atorvastatin in patients with renal ischemia: a comparative study. Int J Pharm Sci Res 5, 34963501.Google Scholar
Superko, HR, McGovern, ME, Raul, E, et al. (2004) Differential effect of two nicotinic acid preparations on low-density lipoprotein subclass distribution in patients classified as low-density lipoprotein pattern A, B, or I. Am J Cardiol 94, 588594.CrossRefGoogle ScholarPubMed
Ding, Y, Li, Y & Wen, A (2015) Effect of niacin on lipids and glucose in patients with type 2 diabetes: a meta-analysis of randomized, controlled clinical trials. Clin Nutr 34, 838844.CrossRefGoogle ScholarPubMed
Page, MJ, Moher, D, Bossuyt, PM, et al. (2021) PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ 372, n160.CrossRefGoogle ScholarPubMed
Higgins, JP & Green, S (2011) Cochrane Handbook for Systematic Reviews of Interventions 5.1.0. The Cochrane Collaboration 2011. https://training.cochrane.org/handbook/current (accessed June 2023).Google Scholar
Higgins, JP, Altman, DG, Gøtzsche, PC, et al. (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343, d5928.CrossRefGoogle ScholarPubMed
Hozo, SP, Djulbegovic, B & Hozo, I (2005) Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Method 5, 110.CrossRefGoogle ScholarPubMed
Guyatt, GH, Oxman, AD, Vist, GE, et al. (2008) GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 336, 924926.CrossRefGoogle ScholarPubMed
Airan-Javia, SL, Wolf, RL, Wolfe, ML, et al. (2009) Atheroprotective lipoprotein effects of a niacin-simvastatin combination compared to low-and high-dose simvastatin monotherapy. Am Heart J 157, 687.e681687.e688.CrossRefGoogle ScholarPubMed
Fabbrini, E, Mohammed, BS, Korenblat, KM, et al. (2010) Effect of fenofibrate and niacin on intrahepatic triglyceride content, very low-density lipoprotein kinetics, and insulin action in obese subjects with nonalcoholic fatty liver disease. J Clin Endocrinol Metab 95, 27272735.CrossRefGoogle ScholarPubMed
Savinova, OV, Fillaus, K, Harris, WS, et al. (2015) Effects of niacin and n-3 fatty acids on the apolipoproteins in overweight patients with elevated triglycerides and reduced HDL cholesterol. Atherosclerosis 240, 520525.CrossRefGoogle ScholarPubMed
Investigators, A-H (2011) Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med 365, 22552267.CrossRefGoogle Scholar
Davoren, P, Kelly, W, Gries, F, et al. (1998) Long-term effects of a sustained-release preparation of acipimox on dyslipidemia and glucose metabolism in non—insulin-dependent diabetes mellitus. Metabolism 47, 250256.CrossRefGoogle ScholarPubMed
Lee, JM, Robson, MD, Yu, L-M, et al. (2009) Effects of high-dose modified-release nicotinic acid on atherosclerosis and vascular function: a randomized, placebo-controlled, magnetic resonance imaging study. J Am Coll Cardiol 54, 17871794.CrossRefGoogle ScholarPubMed
Batuca, J, Amaral, M, Favas, C, et al. (2016) Extended release-niacin increases anti-ApoA-I antibodies that block the anti-oxidant effect of HDL-C: the EXPLORE clinical trial. Br J Clin Pharmacol 83, 10021010.CrossRefGoogle Scholar
Kim, S-H, Kim, M-K, Lee, H-Y, et al. (2011) Efficacy and tolerability of a new extended-release formulation of nicotinic acid in Korean adults with mixed dyslipidemia: an 8-week, multicenter, prospective, randomized, double-blind, and placebo-controlled trial. Clin Ther 33, 13571364.CrossRefGoogle ScholarPubMed
Croyal, M, Ouguerram, K, Passard, M, et al. (2015) Effects of extended-release nicotinic acid on apolipoprotein (a) kinetics in hypertriglyceridemic patients. Arterioscler Thromb Vasc Biol 35, 20422047.CrossRefGoogle ScholarPubMed
Chapman, MJ, Redfern, JS, McGovern, ME, et al. (2010) Niacin and fibrates in atherogenic dyslipidemia: pharmacotherapy to reduce cardiovascular risk. Pharmacol Ther 126, 314345.CrossRefGoogle ScholarPubMed
Santolla, MF, De Francesco, EM, Lappano, R, et al. (2014) Niacin activates the G protein estrogen receptor (GPER)-mediated signalling. Cell Signalling 26, 14661475.CrossRefGoogle Scholar
Beintner, I, Vollert, B, Zarski, A-C, et al. (2019) Adherence reporting in randomized controlled trials examining manualized multisession online interventions: systematic review of practices and proposal for reporting standards. J Med Internet Res 21, e14181.CrossRefGoogle ScholarPubMed
Zhang, L-H, Kamanna, VS, Ganji, SH, et al. (2012) Niacin increases HDL biogenesis by enhancing DR4-dependent transcription of ABCA1 and lipidation of apolipoprotein AI in HepG2 cells. J Lipid Res 53, 941950.CrossRefGoogle ScholarPubMed
Volgman, AS, Palaniappan, LS, Aggarwal, NT, et al. (2018) Atherosclerotic cardiovascular disease in South Asians in the United States: epidemiology, risk factors, and treatments: a scientific statement from the American Heart Association. Circulation 138, e1e34.CrossRefGoogle ScholarPubMed
Birjmohun, RS, Hutten, BA, Kastelein, JJ, et al. (2005) Efficacy and safety of high-density lipoprotein cholesterol-increasing compounds: a meta-analysis of randomized controlled trials. J Am Coll Cardiol 45, 185197.CrossRefGoogle ScholarPubMed
Sahebkar, A, Reiner, Ž, Simental-Mendia, LE, et al. (2016) Effect of extended-release niacin on plasma lipoprotein (a) levels: a systematic review and meta-analysis of randomized placebo-controlled trials. Metabolism 65, 16641678.CrossRefGoogle Scholar
Nordestgaard, BG, Chapman, MJ, Ray, K, et al. (2010) Lipoprotein(a) as a cardiovascular risk factor: current status. Eur Heart J 31, 28442853.CrossRefGoogle ScholarPubMed
Kamanna, VS & Kashyap, ML (2008) Mechanism of action of niacin. Am J Cardiol 101, S20S26.CrossRefGoogle ScholarPubMed
Guo, L & Fisher, EA (2011) Niacin (vitamin B3, nicotinic acid) decreases apolipoprotein B (ApoB) and VLDL secretion from mouse hepatocytes. FASEB J 25, lb174.CrossRefGoogle Scholar
Kang, I, Kim, S-W & Youn, JH (2011) Effects of nicotinic acid on gene expression: potential mechanisms and implications for wanted and unwanted effects of the lipid-lowering drug. J Clin Endocrinol Metab 96, 30483055.CrossRefGoogle ScholarPubMed
Hu, M, Chu, WCW, Yamashita, S, et al. (2012) Liver fat reduction with niacin is influenced by DGAT-2 polymorphisms in hypertriglyceridemic patients. J Lipid Res 53, 802809.CrossRefGoogle ScholarPubMed
Warden, BA, Minnier, J, Watts, GF, et al. (2019) Impact of PCSK9 inhibitors on plasma lipoprotein (a) concentrations with or without a background of niacin therapy. J Clin Lipidol 13, 580585.CrossRefGoogle ScholarPubMed
Watts, GF, Chan, DC, Pang, J, et al. (2020) PCSK9 Inhibition with alirocumab increases the catabolism of lipoprotein (a) particles in statin-treated patients with elevated lipoprotein (a). Metabolism 107, 154221.CrossRefGoogle Scholar
Kamanna, VS & Kashyap, ML (2000) Mechanism of action of niacin on lipoprotein metabolism. Curr Atheroscler Rep 2, 3646.CrossRefGoogle ScholarPubMed