Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-29T02:21:08.168Z Has data issue: false hasContentIssue false

Effects of ornithine α-ketoglutarate on insulin secretion in rat pancreatic islets: implication of nitric oxide synthase and glutamine synthetase pathways*

Published online by Cambridge University Press:  09 March 2007

Christina Schneid
Affiliation:
INSERM U-341, Service de Diabètologie, Hôpital Hôtel-Dieu, Paris, France Laboratoire de Biologie de la Nutrition EA 2498, Faculté de Pharmacie-Paris 5, Paris, France
Sylviane Darquy
Affiliation:
INSERM U-341, Service de Diabètologie, Hôpital Hôtel-Dieu, Paris, France Laboratoire de Biologie de la Nutrition EA 2498, Faculté de Pharmacie-Paris 5, Paris, France
Luc Cynober
Affiliation:
INSERM U-341, Service de Diabètologie, Hôpital Hôtel-Dieu, Paris, France Laboratoire de Biologie de la Nutrition EA 2498, Faculté de Pharmacie-Paris 5, Paris, France
Gérard Reach
Affiliation:
INSERM U-341, Service de Diabètologie, Hôpital Hôtel-Dieu, Paris, France
Jean-Pascal De Bandt*
Affiliation:
INSERM U-341, Service de Diabètologie, Hôpital Hôtel-Dieu, Paris, France Laboratoire de Biologie de la Nutrition EA 2498, Faculté de Pharmacie-Paris 5, Paris, France
*
Corresponding author:Dr J.-P. De Bandt, fax +33 1 42 34 86 12, email jp.debandt@htd.ap-hop-paris.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Ornithine α-ketoglutarate (OKG) administration in human subjects elicits insulin secretion. We investigated whether this action was related to an effect of OKG on islets of Langerhans, and addressed the underlying mechanisms of action. For this purpose the influence of OKG on insulin secretion was measured in isolated rat islets of Langerhans under two different conditions. In incubated islets, OKG (0·25 to 2·5 mmol/l) significantly and dose-relatedly increased insulin secretion (1·7- to 4·2-fold; P<0·05 v. basal). To study the kinetics of OKG-stimulated insulin secretion, perifusion experiments were performed, which showed that OKG affected insulin secretion in both initial and later phases. Experiments using α-ketoglutarate (α-KG) (1 mmol/l) or ornithine (Orn) (2 mmol/l) alone, in concentrations equal to that of OKG, showed that the OKG-induced insulin secretion could not be obtained by either component alone, suggesting that an α-KG–Orn interaction is mandatory for the insulin-secreting effect to occur. Since data obtained in vivo suggest that effects of OKG may depend on the synthesis of NO, glutamine and/or polyamines, three metabolic pathways potentially involved in insulin secretion, we then evaluated their contribution by means of their respective inhibitors: α-NG-nitroarginine methyl ester (l-NAME), methionine sulfoximine (MSO) and difluoromethylornithine (DFMO). Both l-NAME and MSO were able significantly to reduce OKG-induced insulin secretion (30 and 40 % respectively; P<0·05), while DFMO was ineffective. Thus OKG is an effective stimulator of insulin secretion, requiring the joint presence of both Orn and α-KG, and acting mainly via the synthesis of NO and glutamine. A better understanding of OKG insulino-secretory properties and its mechanisms of action are a prerequisite for its use in insulin-compromised situations.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2003

Footnotes

*

Parts of this work have been published in abstract form: Schneid C, Darquy S, Reach G, Cynober L &De Bandt JP (2000) In vitro insulin stimulation in pancreatic islets by ornithine-α-ketoglutarate. Diabetologia43, Suppl. 1, A134; Schneid C, Darquy S, Reach G, Cynober L &De Bandt JP (2000) α-Cétoglutarate d'ornithine et sécrétion d'insuline par les îlots de Langerhans: Rôle de l'ornithine et de l'α-cétoglutarate. Nutrition Clinique et Métabolisme14, Suppl. 2, S131; Schneid C, Darquy S, Reach G, Cynober L &De Bandt JP (2000) Etude des mécanismes impliqués dans la sécrétion d'insuline induite par l'α-cétoglutarate d'ornithine dans un modèle d'îlots de Langerhans de rat. Diabetes &Metabolism27, Suppl. 1, 1S61.

References

Blachier, F, Leclercq-Meyer, V, Marchand, J, Woussen-Colle, MC, Mathias, PC, Sener, A & Malaisse, WJ (1989 a) Stimulus-secretion coupling of arginine-induced insulin release. Functional response of islets to L-arginine and L-ornithine. Biochimica et Biophysica Acta 1013, 144151.Google Scholar
Blachier, F, Mourtada, A, Sener, A & Malaisse, WJ (1989 b) Stimulus-secretion coupling of arginine-induced insulin release. Uptake of metabolized and nonmetabolized cationic amino acids by pancreatic islets. Endocrinology 124, 134141.CrossRefGoogle ScholarPubMed
Cynober, L (1995) Ornithine alpha-ketoglutarate. In Amino Acid Metabolism and Therapy in Health and Nutritional Disease, pp. 385395 [Cynober, L, editor]. Boca Raton, FL: CRC Press.Google Scholar
Cynober, L (1999) The use of alpha-ketoglutarate salts in clinical nutrition and metabolic care. Current Opinion in Clinical Nutrition and Metabolic Care 2, 3337.Google Scholar
Cynober, L, Capeau, J & Ekindjian, OG (1986) Cultured fibroblasts as a suitable model for studying insulin action on glucose uptake. Diabète et Metabolisme 12, 308314.Google Scholar
Cynober, L, Coudray-Lucas, C, De Bandt, JP, Guéchot, J, Aussel, C, Salvucci, M & Giboudeau, J (1990) Action of ornithine alpha-ketoglutarate, ornithine hydrochloride, and calcium alpha-ketoglutarate on plasma amino acid and hormonal patterns in healthy subjects. Journal of the American College of Nutrition 9, 212.Google Scholar
Cynober, L, Saizy, R, Nguyen Dinh, F, Lioret, N & Giboudeau, J (1984 a) Effect of enterally administered ornithine alpha-ketoglutarate on plasma and urinary amino acid levels after burn injury. Journal of Trauma 24, 590596.Google Scholar
Cynober, L, Vaubourdolle, M, Dore, A & Giboudeau, J (1984 b) Kinetics and metabolic effects of orally administered ornithine alpha-ketoglutarate in healthy subjects fed with a standardized regimen. American Journal of Clinical Nutrition 39, 514519.CrossRefGoogle ScholarPubMed
De Bandt, JP & Cynober, LA (1998) Amino acids with anabolic properties. Current Opinion in Clinical Nutrition and Metabolic Care 1, 263272.CrossRefGoogle ScholarPubMed
Gay, G, Villaume, C, Beaufrand, MJ, Felber, JP & Debry, G (1979) Effects of ornithine alphaketoglutarate on blood insulin, glucagon and amino acids in alcoholic cirrhosis. Biomedicine 30, 173177.Google Scholar
Gross, R, Roye, M, Manteghetti, M, Broca, C, Hillaire-Buys, D, Masiello, P & Ribes, G (1997) Mechanisms involved in the effect of nitric oxide synthase inhibition on L-arginine-induced insulin secretion. British Journal of Pharmacology 120, 495501.CrossRefGoogle ScholarPubMed
Hoogarden, D, Nielsen, J & Larson, L (1986) Localisation and biosynthesis of polyamines in insulin-producing cells. Biochemical Journal 238, 7374.Google Scholar
Krassowski, J, Rousselle, J, Maeder, E & Felber, JP (1981) The effect of ornithine-alpha-ketoglutarate on insulin and glucagon secretion in normal subjects. Acta Endocrinologica 98, 252255.Google ScholarPubMed
Lacy, PE & Kostianovsky, M (1967) Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes 16, 3539.CrossRefGoogle ScholarPubMed
Leander, UF, Veterberg, K & Vinnars, E (1985) Nitrogen sparing effect of Ornicetil in the immediate postoperative state. Clinical biochemistry and nitrogen balance. Clinical Nutrition 4, 4351.Google Scholar
Le Boucher, J, Coudray-Lucas, C, Lasnier, E, Jardel, A, Ekindjian, OG & Cynober, LA (1997) Enteral administration of ornithine alpha-ketoglutarate or arginine alpha-ketoglutarate: a comparative study of their effects on glutamine pools in burn-injured rats. Critical Care Medicine 25, 293298.CrossRefGoogle ScholarPubMed
Le Boucher, J, Farges, MC, Minet, R, Vasson, MP & Cynober, L (1999) Modulation of immune response with ornithine α-ketoglutarate in burn injury: an arginine or glutamine dependency? Nutrition 15, 773777.Google Scholar
Lenzen, S, Schmidt, W, Rustenbeck, I & Panten, U (1986) 2-ketoglut tarate generation in pancreatic B-cell mitochondria regulates insulin secretory action of amino acids and 2-keto acids. Bioscience Reports 6, 163169.CrossRefGoogle Scholar
MacDonald, M & Fahien, L (2000) Glutamate is not a messenger in insulin secretion. Journal of Biological Chemistry 275, 3402534027.CrossRefGoogle Scholar
Maechler, P & Wollheim, CB (1999) Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis. Nature 402, 685689.Google Scholar
Malaisse, W (1991) Metabolic factors influencing synthesis and secretion of pancreatic islet hormones. In The Endocrine Pancreas, pp. 7392 [Samols, E, editor]. New York: Raven Press Ltd.Google Scholar
Malaisse, WJ, Blachier, F, Mourtada, A, Camara, J, Albor, A, Valverde, I & Sener, A (1989 a) Stimulus-secretion coupling of arginine-induced insulin release. Metabolism of L-arginine and L-ornithine in pancreatic islets. Biochimica et Biophysica Acta 1013, 133143.Google Scholar
Malaisse, WJ, Blachier, F, Mourtada, A, Camara, J, Albor, A, Valverde, I & Sener, A (1989 b) Stimulus-secretion coupling of arginine-induced insulin release: metabolism of L-arginine and L-ornithine in tumoral islet cells. Molecular and Cellular Endocrinology 67, 8191.Google Scholar
Malaisse, WJ, Sener, A, Malaisse-Lagae, F, Welsh, M, Matthews, DE, Bier, DM & Hellerstrom, C (1982) The stimulus-secretion coupling of amino acid-induced insulin release. Metabolic response of pancreatic islets of L-glutamine and L-leucine. Journal of Biological Chemistry 257, 87318737.Google Scholar
Marie, JC, Bailblé, D, Gylfe, E & Portha, B (2000) Defective glucose-dependent cytosolic Ca2+ handling in islets of GK and nSTZ rat models of type 2 Diabetes. Journal of Endocrinology 169, 169176.Google Scholar
Minet, R, Villie, F, Marcollet, M, Meynial-Denis, D & Cynober, L (1997) Measurement of glutamine synthetase activity in rat muscle by a colorimetric assay. Clinica Chimica Acta 268, 121132.Google Scholar
Moinard, C, Caldefie, F, Walrand, S, Tridon, A, Chassagne, J, Vasson, MP & Cynober, L (2002) Effects of ornithine 2-oxoglutarate on neutrophils in stressed rats: evidence for the involvement of nitric oxide and polyamines. Clinical Science (London) 102, 287295.CrossRefGoogle ScholarPubMed
Rorsman, P & Renström, E (1999) Cell biology: glutamate primes up the pump. Nature 402, 595596.Google Scholar
Schmidt, HH, Warner, TD, Ishii, K, Sheng, H & Murad, F (1992) Insulin secretion from pancreatic B cells caused by L-arginine-derived nitrogen oxides. Science 255, 721723.Google Scholar
Sener, A, Blachier, F & Malaisse, WJ (1988) Production of urea but absence of urea cycle in pancreatic islet cells. Medicine and Science Research 16, 483484.Google Scholar
Vaubourdolle, M, Cynober, L, Lioret, N, Coudray-Lucas, C, Aussel, C, Saizy, R & Giboudeau, J (1987) Influence of enterally administered ornithine alpha-ketoglutarate on hormonal patterns in burn patients. Burns 13, 349356.CrossRefGoogle ScholarPubMed
Vaubourdolle, M, Salvucci, M, Coudray-Lucas, C, Agneray, J, Cynober, L & Ekindjian, OG (1990) Action of ornithine alpha ketoglutarate on DNA synthesis by human fibroblasts. In Vitro Cellular and Developmental Biology 26, 187192.Google Scholar
Welsh, N & Sjöholm, A (1988) Polyamines and insulin production in isolated mouse pancreatic islets. Biochemical Journal 252, 701707.Google Scholar