Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T18:10:03.463Z Has data issue: false hasContentIssue false

Estimation of rate of protein synthesis by constant infusion of labelled amino acids in pigs

Published online by Cambridge University Press:  09 March 2007

O. Simon
Affiliation:
Institute of Animal Nutrition, Department of Animal Production and Veterinary Medicine, Humboldt University, Berlin, German Democratic Republic
R. Münchmeyer
Affiliation:
Institute of Animal Nutrition, Department of Animal Production and Veterinary Medicine, Humboldt University, Berlin, German Democratic Republic
H. Bergner
Affiliation:
Institute of Animal Nutrition, Department of Animal Production and Veterinary Medicine, Humboldt University, Berlin, German Democratic Republic
Teresa Zebrowska
Affiliation:
Institute of Animal Physiology and Nutrition, Jabłonna, Warsaw, Poland
Lucyna Buraczewska
Affiliation:
Institute of Animal Physiology and Nutrition, Jabłonna, Warsaw, Poland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The fractional synthetic rates of tissue proteins were studied in growing pigs using the constant-infusion technique of tracer-labelled amino acids ([14C]leucine and [14C]lysine) and the mathetmatical model for calculation, employed in rats by Garlick, Millward & James (1973).

2. During a 6 h infusion, samples were taken from blood and muscle and at the end of the infusion from liver, muscle, pancreas, heart, duodenum, jejunum, ileum, colon, and skin. The specific radioactivity of free and protein-bound leucine and lysine was estimated.

3. A quasi-steady-state in the specific radioactivity of free plasma leucine and lysine was reached within approximately 2 h, the rate-constants being 35 and 48/d respectively.

4. The specific radioactivity of free leucine and lysine in plasma was used to calculate the flux of these amino acids. It was found to be higher than the daily intake.

5. The average fractional rate of protein synthesis in muscle and heart was 8.1 %/d, in small and large intestine the values were 50 and 33 %/d respectively and in liver and pancreas more than 100 %/d.

6. The calculation of protein synthetic rate in pig tissue using the constant-infusion method of labelled amino acids seems to be a suitable tool for study of this species.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1978

References

Airhart, J., Vidrich, A. & Khairallah, E. A. (1974). Biochem. J. 140, 539.CrossRefGoogle Scholar
Alpers, D. H. & Thier, S. O. (1972). Biochim. biophys. Acta 262, 535.CrossRefGoogle Scholar
Bergner, H., Bergner, U. & Simon, O. (1977). Arch. Tierernährung 27, 173.CrossRefGoogle Scholar
Bergner, U., Bergner, H. & Simon, O. (1976). Arch. Tierernährung 26, 612.Google Scholar
Corring, T. (1975). Annls biol. anim. Biochim. Biophys. 15, 115.CrossRefGoogle Scholar
Fern, E. B., Hider, R. C. & London, D. R. (1971). Eur. J. clin. Invest. 1, 211.CrossRefGoogle Scholar
Fern, E. B. & Garlick, P. J. (1973). Biochem. J. 134, 1127.CrossRefGoogle Scholar
Fern, E. B. & Garlick, P. J. (1974). Biochem. J. 142, 413.CrossRefGoogle Scholar
Garlick, P. J. (1969). Nature, Lond. 223, 61.CrossRefGoogle Scholar
Garlick, P. J., Burk, J. L. & Swick, R. W. (1976). Am. J. Nutr. 230, 1108.Google Scholar
Garlick, P. J., Millward, D. J. & James, W. P. T. (1973). Biochem. J. 136, 935.CrossRefGoogle Scholar
Harenza, J., Wojtatowicz, Z. & Zouner, H. (1975). In Chemia w Produkcji Zwierzęcej [Wydawnicze, B., editor]. Warsaw: Chemia.Google Scholar
Henriques, O. B., Henriques, S. B. & Neuberger, A. (1955). Biochem. J. 60, 409.CrossRefGoogle Scholar
Hider, R. C., Fern, E. B. & London, D. R. (1969). Biochem. J. 114, 171.CrossRefGoogle Scholar
Hider, R. C., Fern, E. B. & London, D. R. (1971). Biochem. J. 221, 817.CrossRefGoogle Scholar
Kipnis, D. M., Reiss, E. & Helmreich, E. (1961). Biochim. biophys. Acta 51, 519.CrossRefGoogle Scholar
Li, J. B., Fulks, R. M. & Goldberg, A. L. (1973). J. biol. chem. 248, 7272.CrossRefGoogle Scholar
London, D. R. (1972). Proc. Nutr. Soc. 31, 193.CrossRefGoogle Scholar
Millward, D. J. & Garlick, P. J. (1972). Proc. Nutr. Soc. 31, 157.CrossRefGoogle Scholar
Millward, D. J., Garlick, P. J., James, W. P. T., Sender, P. M. & Waterlow, J. C. (1976). Publ. Eur. Ass. Anim. Prod. no. 16.Google Scholar
Millward, D. J., Garlick, P. J., Nnanyelugo, D. O. & Waterlow, J. C. (1976). Biochem J. 156, 185.CrossRefGoogle Scholar
Millward, D. J., Garlick, P. J., Stewart, R. J. C., Nnanyelugo, D. O. & Waterlow, J. C. (1975). Biochem. J. 150, 235.CrossRefGoogle Scholar
Millward, D. J., Nnanyelugo, D. O. & Garlick, P. J. (1974 a). Proc. Nutr. Soc. 33, 55A.Google Scholar
Millward, D. J., Nnanyelugo, D. O. & Garlick, P. J. (1974 b). Proc. Nutr. Soc. 33, 115A.Google Scholar
Perry, B. N. (1975). J. agric. Sci., Camb. 84, 191.CrossRefGoogle Scholar
Simon, O., Bohley, P., Hückel, C., Münchmeyer, R. & Bergner, H. (1976). Arch. Tierernährung 26, 307.CrossRefGoogle Scholar
Simon, O., Münchmeyer, R., Bergner, H. & Zebrowska, T. (1976). Arch. Tierernährung 26, 599.CrossRefGoogle Scholar
Tsukada, K., Moriyama, T. & Lieberman, J. (1971). J. Biochem., Tokyo 70, 172.Google Scholar
Venrocij, W. J., Poort, C., Kramer, M. F. & Jansen, M. T. (1972). Eur. J. Biochem. 30, 427.CrossRefGoogle Scholar
Vidrich, A., Airhart, J., Bruno, M. K. & Khairallah, E. A. (1977). Biochem. J. 162, 257.CrossRefGoogle Scholar
Waterlow, J. C. (1967). Clin. Sci. 33, 507.Google Scholar
Waterlow, J. C. & Stephen, J. M. (1967). Clin. Sci. 33, 489.Google Scholar
Waterlow, J. C. & Stephen, J. M. (1968). Clin. Sci. 35, 287.Google Scholar