Skip to main content Accessibility help
×
Home

A higher ratio of refined grain to whole grain is associated with a greater likelihood of chronic kidney disease: a population-based study

  • Mohsen Mazidi (a1) (a2), Niki Katsiki (a3), Dimitri P. Mikhailidis (a4) and Maciej Banach (a5) (a6) (a7)

Abstract

A growing number of studies suggest that diet and renal function are related. However, little is known about the link between both whole grain (WG) and refined grain (RG) consumption and kidney function parameters. Thus, we investigated the association of WG and RG with urinary albumin to creatinine ratio (ACR) and prevalent chronic kidney disease (CKD). Data from participants of the National Health and Nutrition Examination Surveys (NHANES) from 2005 to 2010 were collected. Estimated glomerular filtration rate (eGFR) was calculated by the CKD Epidemiology Collaboration equation. Survey design and sample weights were taken into consideration for statistical analyses. Finally, we included 16 325 participants from NHANES, 6·9 % of whom had prevalent CKD. In models adjusted for age, sex, race, fasting blood glucose, blood pressure, adiposity, hypertension and diabetes status, mean eGFR significantly increased across increasing quartiles of WG (Q1: 88·2 v. Q4: 95·4 ml/min per 1·73 m2, P<0·001), whereas it significantly decreased across increasing quartiles of RG (Q1: 97·2 v. Q4: 88·4 ml/min per 1·73 m2, P<0·001). Furthermore, serum uric acid levels and ACR significantly decreased across quartiles of WG (both P<0·001). In multivariable-adjusted logistic regression models, the likelihood of prevalent CKD was 21 % lower in the highest WG quartile compared with the lowest one. In conclusion, our results shed light on the beneficial impact of WG on kidney function and CKD, whereas RG is adversely associated with eGFR.

Copyright

Corresponding author

*Corresponding author: M. Mazidi, email moshen@genetics.ac.cn

References

Hide All
1. Levey, AS & Coresh, J (2012) Chronic kidney disease. Lancet 379, 165180.
2. Athyros, VG, Katsiki, N, Karagiannis, A, et al. (2012) Editorial: should chronic kidney disease be considered as a coronary heart disease equivalent? Curr Vasc Pharmacol 10, 374377.
3. Athyros, VG, Katsiki, N, Karagiannis, A, et al. (2012) Stage of chronic kidney disease and severity of coronary heart disease manifestation. Expert Opin Pharmacother 13, 457460.
4. Honeycutt, AA, Segel, JE, Zhuo, X, et al. (2013) Medical costs of CKD in the Medicare population. J Am Soc Nephrol 24, 14781483.
5. Leung, KC, Tonelli, M & James, MT (2013) Chronic kidney disease following acute kidney injury-risk and outcomes. Nat Rev Nephrol 9, 7785.
6. Miyamoto, T, Carrero, JJ & Stenvinkel, P (2011) Inflammation as a risk factor and target for therapy in chronic kidney disease. Curr Opin Nephrol Hypertens 20, 662668.
7. Giugliano, D, Ceriello, A & Esposito, K (2006) The effects of diet on inflammation: emphasis on the metabolic syndrome. J Am Coll Cardiol 48, 677685.
8. Mazidi, M, Kengne, AP, Mikhailidis, DP, et al. (2017) Dietary food patterns and glucose/insulin homeostasis: a cross-sectional study involving 24 182 adult Americans. Lipids Health Dis 16, 192.
9. Mazidi, M, Kengne, AP, Mikhailidis, DP, et al. (2018) Effects of selected dietary constituents on high-sensitivity C-reactive protein levels in U.S. adults. Ann Med 50, 16.
10. Farhadnejad, H, Asghari, G, Mirmiran, P, et al. (2016) Micronutrient intakes and incidence of chronic kidney disease in adults: Tehran Lipid and Glucose Study. Nutrients 8, 217.
11. Huang, X, Jiménez-Moleón, JJ, Lindholm, B, et al. (2013) Mediterranean diet, kidney function, and mortality in men with CKD. Clin J Am Soc Nephrol 8, 15481555.
12. Dunkler, D, Dehghan, M, Teo, KK, et al. (2013) Diet and kidney disease in high-risk individuals with type 2 diabetes mellitus. JAMA Intern Med 173, 16821692.
13. Huang, X, Sjogren, P, Arnlov, J, et al. (2014) Serum fatty acid patterns, insulin sensitivity and the metabolic syndrome in individuals with chronic kidney disease. J Int Med 275, 7183.
14. Miller, ER 3rd, Juraschek, SP, Appel, LJ, et al. (2009) The effect of n-3 long-chain polyunsaturated fatty acid supplementation on urine protein excretion and kidney function: meta-analysis of clinical trials. Am J Clin Nutr 89, 19371945.
15. Xu, H, Huang, X, Riserus, U, et al. (2014) Dietary fiber, kidney function, inflammation, and mortality risk. Clin J Am Soc Nephrol 9, 21042110.
16. Lin, J, Judd, S, Le, A, et al. (2010) Associations of dietary fat with albuminuria and kidney dysfunction. Am J Clin Nutr 92, 897904.
17. Sabatino, A, Regolisti, G, Gandolfini, I, et al. (2017) Diet and enteral nutrition in patients with chronic kidney disease not on dialysis: a review focusing on fat, fiber and protein intake. J Nephrol 30, 743754.
18. Herber-Gast, GM, Boersma, M, Verschuren, WMM, et al. (2017) Consumption of whole grains, fruit and vegetables is not associated with indices of renal function in the population-based longitudinal Doetinchem study. Br J Nutr 118, 375382.
19. Foster, MC, Hwang, SJ, Massaro, JM, et al. (2015) Lifestyle factors and indices of kidney function in the Framingham Heart Study. Am J Nephrol 41, 267274.
20. Nettleton, JA, Steffen, LM, Palmas, W, et al. (2008) Associations between microalbuminuria and animal foods, plant foods, and dietary patterns in the Multiethnic Study of Atherosclerosis. Am J Clin Nutr 87, 18251836.
21. Deniz Ayli, M, Ayli, M, Ensari, C, et al. (2000) Effect of low-protein diet supplemented with keto acids on progression of disease in patients with chronic renal failure. Nephron 84, 288289.
22. Vaziri, ND, Said, HM, Hollander, D, et al. (1985) Impaired intestinal absorption of riboflavin in experimental uremia. Nephron 41, 2629.
23. Centers for Disease Control and Prevention, National Center for Health Statistics (2019) National Health and Nutrition Examination Survey. http://www.cdc.gov/nchs/nhanes.htm (accessed April 2019).
24. Liu, Y (2014) The relationship between lifestyle and self-reported oral health among American adults. Int Dent J 64, 4651.
25. Needham, BL, Adler, N, Gregorich, S, et al. (2013) Socioeconomic status, health behavior, and leukocyte telomere length in the National Health and Nutrition Examination Survey, 1999–2002. Soc Sci Med (1982) 85, 18.
26. Remer, T (2001) Influence of nutrition on acid–base balance–metabolic aspects. Eur J Nutr 40, 214220.
27. Mazidi, M, Michos, ED & Banach, M (2017) The association of telomere length and serum 25-hydroxyvitamin D levels in US adults: the National Health and Nutrition Examination Survey. Arch Med Sci 13, 6165.
28. Centers for Disease Control and Prevention (2011) Laboratory Procedure Manual. Analyte: C-Reactive Protein. http://www.cdc.gov/NCHS/data/nhanes/nhanes_09_10/CRP_F_met.pdf (accessed August 2013).
29. Selvin, E, Manzi, J, Stevens, LA, et al. (2007) Calibration of serum creatinine in the National Health and Nutrition Examination Surveys (NHANES) 1988–1994, 1999–2004. Am J Kidney Dis 50, 918926.
30. Chavers, BM, Simonson, J & Michael, AF (1984) A solid phase fluorescent immunoassay for the measurement of human urinary albumin. Kidney Int 25, 576578.
31. Grundy, SM, Brewer, HB Jr, Cleeman, JI, et al. (2004) Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 109, 433438.
32. Ahluwalia, N, Andreeva, VA, Kesse-Guyot, E, et al. (2013) Dietary patterns, inflammation and the metabolic syndrome. Diabetes Metab 39, 99110.
33. Ahluwalia, N, Dwyer, J, Terry, A, et al. (2016) Update on NHANES dietary data: focus on collection, release, analytical considerations, and uses to inform public policy. Adv Nutr 7, 121134.
34. Moshfegh, AJ, Rhodes, DG, Baer, DJ, et al. (2008) The US Department of Agriculture automated multiple-pass method reduces bias in the collection of energy intakes. Am J Clin Nutr 88, 324332.
35. Bowman, SAF, Friday, JE & Moshfegh, A (2008) MyPyramid Equivalents Database, 2.0 for USDA Survey Foods; Food Surveys Research Group, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture: Beltsville, MD, USA. http://www.ars.usda.gov/ba/bhnrc/fsrg (accessed April 2017).
36. Centers for Disease Control and Prevention, National Center for Health Statistics (2005) Analytic and Reporting Guidelines. http://www.cdc.gov/nchs/data/nhanes/nhanes0304/nhanesanalyticguidelinesdec2005.pdf (accessed April 2019).
37. Nwankwo, T, Yoon, SS, Burt, V, et al. (2013) Hypertension among adults in the United States: National Health and Nutrition Examination Survey, 2011–2012. NCHS Data Brief 133, 18.
38. Slinker, BK & Glantz, SA (1985) Multiple regression for physiological data analysis: the problem of multicollinearity. Am J Physiol 249, R1R12.
39. Preacher, KJ & Hayes, AF (2008) Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav Res Methods 40, 879891.
40. Lin, J, Fung, TT, Hu, FB, et al. (2011) Association of dietary patterns with albuminuria and kidney function decline in older white women: a subgroup analysis from the Nurses’ Health Study. Am J Kidney Dis 57, 245254.
41. Dunkler, D, Dehghan, M, Teo, KK, et al. (2013) Diet and kidney disease in high-risk individuals with type 2 diabetes mellitus. JAMA Int Med 173, 16821692.
42. Xu, H, Sjögren, P, Ärnlöv, J, et al. (2015) A proinflammatory diet is associated with systemic inflammation and reduced kidney function in elderly adults. J Nutr 145, 729735.
43. Khatri, M, Moon, YP, Scarmeas, N, et al. (2014) The association between a Mediterranean-style diet and kidney function in the Northern Manhattan Study cohort. Clin J Am Soc Nephrol 9, 18681875.
44. Ma, J, Jacques, PF, Hwang, SJ, et al. (2016) Dietary guideline adherence index and kidney measures in the Framingham Heart Study. Am J Kidney Dis 68, 703715.
45. Lin, J, Fung, TT, Hu, FB, et al. (2011) Association of dietary patterns with albuminuria and kidney function decline in older white women: a subgroup analysis from the Nurses’ Health Study. Am J Kidney Dis 57, 245254.
46. Gopinath, B, Harris, D, Flood, V, et al. (2013) A better diet quality is associated with a reduced likelihood of CKD in older adults. Nutr Metab Cardiovasc Dis 23, 937943.
47. Odermatt, A (2011) The Western-style diet: a major risk factor for impaired kidney function and chronic kidney disease. Am J Physiol Renal Physiol 301, F919F931.
48. Nettleton, JA, Steffen, LM, Mayer-Davis, EJ, et al. (2006) Dietary patterns are associated with biochemical markers of inflammation and endothelial activation in the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr 83, 13691379.
49. Nerpin, E, Helmersson-Karlqvist, J, Risérus, U, et al. (2012) Inflammation, oxidative stress, glomerular filtration rate, and albuminuria in elderly men: a cross-sectional study. BMC Res Notes 5, 537.
50. Qi, L, van Dam, RM, Liu, S, et al. (2006) Whole-grain, bran, and cereal fiber intakes and markers of systemic inflammation in diabetic women. Diabetes Care 29, 207211.
51. Jensen, MK, Koh-Banerjee, P, Franz, M, et al. (2006) Whole grains, bran, and germ in relation to homocysteine and markers of glycemic control, lipids, and inflammation 1. Am J Clin Nutr 83, 275283.
52. Lutsey, PL, Jacobs, DR Jr, Kori, S, et al. (2007) Whole grain intake and its cross-sectional association with obesity, insulin resistance, inflammation, diabetes and subclinical CVD: the MESA study. Br J Nutr 98, 397405.
53. Liese, AD, Roach, AK, Sparks, KC, et al. (2003) Whole-grain intake and insulin sensitivity: the Insulin Resistance Atherosclerosis Study. Am J Clin Nutr 78, 965971.
54. Steffen, LM, Jacobs, DR Jr, Murtaugh, MA, et al. (2003) Whole grain intake is associated with lower body mass and greater insulin sensitivity among adolescents. Am J Epidemiol 158, 243250.
55. Athyros, VG, Katsiki, N, Karagiannis, A, et al. (2015) Statins can improve proteinuria and glomerular filtration rate loss in chronic kidney disease patients, further reducing cardiovascular risk. Fact or fiction? Expert Opin Pharmacother 16, 14491461.
56. Nikolic, D, Banach, M, Nikfar, S, et al. (2013) A meta-analysis of the role of statins on renal outcomes in patients with chronic kidney disease. Is the duration of therapy important? Int J Cardiol 168, 54375447.
57. Nikolic, D, Nikfar, S, Salari, P, et al. (2013) Effects of statins on lipid profile in chronic kidney disease patients: a meta-analysis of randomized controlled trials. Curr Med Res Opin 29, 435451.
58. Deedwania, PC (2014) Statins in chronic kidney disease: cardiovascular risk and kidney function. Postgrad Med 126, 2936.
59. Marquart L, Slavin JL & Fulcher TG (editors) (2002) Whole-grain Foods in Health and Disease. St Paul, MN: American Association of Cereal Chemists, Inc.
60. Ajani, UA, Ford, ES & Mokdad, AH (2004) Dietary fiber and C-reactive protein: findings from national health and nutrition examination survey data. J Nutr 134, 11811185.
61. King, DE, Egan, BM & Geesey, ME (2003) Relation of dietary fat and fiber to elevation of C-reactive protein. Am J Cardiol 92, 13351339.
62. Canfora, EE, Jocken, JW & Blaak, EE (2015) Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 11, 577591.
63. Katsiki, N & Mikhailidis, DP (2015) Hyperuricaemia in cardiovascular diseases: a passive or an active player? Med Princ Pract 24, 269270.
64. Katsiki, N, Karagiannis, A, Athyros, VG, et al. (2013) Hyperuricaemia: more than just a cause of gout? J Cardiovasc Med (Hagerstown) 14, 397402.
65. Xia, X, Luo, Q, Li, B, et al. (2016) Serum uric acid and mortality in chronic kidney disease: a systematic review and meta-analysis. Metabolism 65, 13261341.
66. Mende, C (2015) Management of chronic kidney disease: the relationship between serum uric acid and development of nephropathy. Adv Ther 32, 11771191.
67. Sampson, AL, Singer, RF & Walters, GD (2017) Uric acid lowering therapies for preventing or delaying the progression of chronic kidney disease. Cochrane Database Syst Rev 10, Cd009460.
68. Tooze, JA, Midthune, D, Dodd, KW, et al. (2006) A new statistical method for estimating the usual intake of episodically consumed foods with application to their distribution. J Am Diet Assoc 106, 15751587.
69. Guenther, PM, Ding, EL & Rimm, EB (2013) Alcoholic beverage consumption by adults compared to dietary guidelines: results of the National Health and Nutrition Examination Survey, 2009–2010. J Acad Nutr Diet 113, 546550.
70. Hebert, JR, Hurley, TG, Steck, SE, et al. (2014) Considering the value of dietary assessment data in informing nutrition-related health policy. Adv Nutr 5, 447455.
71. Ma, Y, Olendzki, BC, Pagoto, SL, et al. (2009) Number of 24 hour diet recalls needed to estimate energy intake. Ann Epidemiol 19, 553559.
72. Rothman, KJ (2008) BMI-related errors in the measurement of obesity. Int J Obes (2005) 32, Suppl. 3, S56S59.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed