Skip to main content Accessibility help
×
Home

Investigation into the acute effects of total and partial energy restriction on postprandial metabolism among overweight/obese participants

  • Rona Antoni (a1), Kelly L. Johnston (a2), Adam L. Collins (a1) and M. Denise Robertson (a1)

Abstract

The intermittent energy restriction (IER) approach to weight loss involves short periods of substantial (75–100 %) energy restriction (ER) interspersed with normal eating. This study aimed to characterise the early metabolic response to these varying degrees of ER, which occurs acutely and prior to weight loss. Ten (three female) healthy, overweight/obese participants (36 (SEM 5) years; 29·0 (sem 1·1) kg/m2) took part in this acute three-way cross-over study. Participants completed three 1-d dietary interventions in a randomised order with a 1-week washout period: isoenergetic intake, partial 75 % ER and total 100 % ER. Fasting and postprandial (6-h) metabolic responses to a liquid test meal were assessed the following morning via serial blood sampling and indirect calorimetry. Food intake was also recorded for two subsequent days of ad libitum intake. Relative to the isoenergetic control, postprandial glucose responses were increased following total ER (+142 %; P=0·015) and to a lesser extent after partial ER (+76 %; P=0·051). There was also a delay in the glucose time to peak after total ER only (P=0·024). Both total and partial ER interventions produced comparable reductions in postprandial TAG responses (−75 and −59 %, respectively; both P<0·05) and 3-d energy intake deficits of approximately 30 % (both P=0·015). Resting and meal-induced thermogenesis were not significantly affected by either ER intervention. In conclusion, our data demonstrate the ability of substantial ER to acutely alter postprandial glucose–lipid metabolism (with partial ER producing the more favourable overall response), as well as incomplete energy-intake compensation amongst overweight/obese participants. Further investigations are required to establish how metabolism adapts over time to the repeated perturbations experienced during IER, as well as the implications for long-term health.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Investigation into the acute effects of total and partial energy restriction on postprandial metabolism among overweight/obese participants
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Investigation into the acute effects of total and partial energy restriction on postprandial metabolism among overweight/obese participants
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Investigation into the acute effects of total and partial energy restriction on postprandial metabolism among overweight/obese participants
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: M. D. Robertson, email m.robertson@surrey.ac.uk

References

Hide All
1. Antoni, R, Johnston, KL, Collins, AL, et al. (2014) The effects of intermittent energy restriction on indices of cardiometabolic health. Res Endocrinol 2014, Article ID 459119.
2. Klempel, MC, Kroeger, CM, Bhutani, S, et al. (2012) Intermittent fasting combined with calorie restriction is effective for weight loss and cardio-protection in obese women. Nutr J 11, 98.
3. Harvie, MN, Pegington, M, Mattson, MP, et al. (2011) The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomised trial in young overweight women. Int J Obes 35, 714727.
4. Harvie, M, Wright, C, Pegington, M, et al. (2013) The effect of intermittent energy and carbohydrate restriction v. daily energy restriction on weight loss and metabolic disease risk markers in overweight women. Br J Nutr 110, 15341547.
5. Heilbronn, LK, Civitarese, AE, Bogacka, I, et al. (2005) Glucose tolerance and skeletal muscle gene expression in response to alternate day fasting. Obes Res 13, 574581.
6. Bhutani, S, Klempel, MC, Kroeger, CM, et al. (2013) Alternate day fasting and endurance exercise combine to reduce body weight and favorably alter plasma lipids in obese humans. Obesity (Silver Spring) 21, 13701379.
7. Hyson, D, Rutledge, JC & Berglund, MD (2003) Postprandial lipemia and cardiovascular disease. Cur Atheroscler Rep 5, 437444.
8. Node, K & Inaeu, T (2009) Postprandial hyperglycemia as an etiological factor in vascular failure. Cardiovasc Diabetol 8, 23.
9. Lara-Castro, C, Newcomer, B & Rowell, J (2008) Effects of short-term very low calorie diet on intramyocellular lipid and insulin sensitivity in non-diabetics and type 2 diabetic patients. Metabolism 57, 18.
10. Lim, EL, Hollingsworth, KG, Aribisala, BS, et al. (2011) Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia 54, 25062514.
11. Soeters, MR, Soeters, PB, Schooneman, MG, et al. (2012) Adaptive reciprocity of lipid and glucose metabolism in human short-term starvation. Am J Physiol Endocrinol Metab 303, E1397E1407.
12. Anderson, JW & Herman, RH (1972) Effect of fasting, caloric restriction, and refeeding on glucose tolerance of normal men. Am J Clin Nutr 25, 4152.
13. Fery, F, d’Attellis, NP & Balasse, EO (1990) Mechanisms of starvation diabetes: a study with double tracer and indirect calorimetry. Am J Physiol 259, E770E777.
14. Horton, TJ & Hill, JO (2001) Prolonged fasting significantly changes nutrient oxidation and glucose tolerance after a normal mixed meal. J Appl Physiol 90, 155163.
15. Bergman, BC, Cornier, MA, Horton, TJ, et al. (2007) Effects of fasting on insulin action and glucose kinetics in lean and obese men and women. Am J Physiol Endocrinol Metab 293, E1103E1111.
16. Salgin, B, Marcovecchio, ML, Humphreys, SM, et al. (2009) Effects of prolonged fasting and sustained lipolysis on insulin secretion and insulin sensitivity in normal subjects. Am J Physiol Endocrinol Metab 296, E454E461.
17. van Strien, T, Frijters, JER, Bergers, GPA, et al. (1986) The Dutch Eating Behavior Questionnaire (DEBQ) for assessment of restrained, emotional, and external eating behavior. Int J Eat Disord 5, 295315.
18. Henry, CJ (2005) Basal metabolic rate studies in humans: measurement and development of new equations. Public Health Nutr 8, 11331152.
19. Scientific Advisory Committee on Nutrition (SACN) Energy Requirements Working Group (2011) Dietary reference values for energy. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/339 317/SACN_Dietary_Reference_Values_for_Energy.pdf (accessed July 2015).
20. Nicholson, MJ, Holton, J, Bradley, AP, et al. (1996) The performance of a variable-flow indirect calorimeter. Physiol Meas 17, 4355.
21. Compher, C, Frankenfield, D, Keim, N, et al. (2006) Best practice methods to apply to measurement of resting metabolic rate in adults: a systematic review. J Acad Nutr Diet 106, 881903.
22. Weir, JB (1949) New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 109, 19.
23. Frayn, KN (1983) Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol Respir Environ Exerc Physiol 55, 628634.
24. Brouns, F, Bjorck, I, Frayn, KN, et al. (2005) Glycaemic index methodology. Nutr Res Rev 18, 145171.
25. Kramer, CK, Vuksan, V, Choi, H, et al. (2014) Emerging parameters of the insulin and glucose response on the oral glucose tolerance test: reproducibility and implications for glucose homeostasis in individuals with and without diabetes. Diabetes Res Clin Prac 105, 8895.
26. Roden, M, Price, TB, Perseghin, G, et al. (1996) Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Inves 97, 28592865.
27. Holland, WL, Knotts, TA, Chavez, JA, et al. (2007) Lipid mediators of insulin resistance. Nutr Rev 65, S39S46.
28. Webber, J, Simpson, E, Parkin, H, et al. (1994) Metabolic effects of acute hyperketonaemia in man before and during an hyperinsulinaemic euglycaemic clamp. Clin Sci (Lond) 86, 677687.
29. McMahon, M, Gerich, J & Rizza, R (1988) Effects of glucocorticoids on carbohydrate metabolism. Diabetes Metab Rev 4, 1730.
30. Cerqueira, FM, da Cunha, FM, Caldeira da Silva, CC, et al. (2011) Long-term intermittent feeding, but not caloric restriction, leads to redox imbalance, insulin receptor nitration, and glucose intolerance. Free Radic Biol Med 51, 14541460.
31. Plaisance, EP & Fisher, G (2014) Exercise and dietary-mediated reductions in postprandial lipemia. J Nutr Metab 2014, 902065.
32. Jensen, MD, Ekberg, K & Landau, BR (2001) Lipid metabolism during fasting. Am J Physiol Endocrinol Metab 281, E789E793.
33. Bellou, E, Maraki, M, Magkos, F, et al. (2013) Effect of acute negative and positive energy balance on basal very-low density lipoprotein triglyceride metabolism in women. PLOS ONE 8, e60251.
34. Frayn, K, Humphreys, S & Coppack, S (1996) Net carbon flux across subcutaneous adipose tissue after a standard meal in normal-weight and insulin resistant obese subjects. Int J Obes Relat Metab Disord 20, 795800.
35. Karpe, F, Hellénius, M & Hamsten, A (1999) Differences in postprandial concentrations of very-low-density lipoprotein and chylomicron remnants between normotriglyceridemic and hypertriglyceridemic men with and without coronary heart disease. Metabolism 48, 301307.
36. O’Meara, N, Lewis, G, Cabana, V, et al. (1992) Role of basal triglyceride and high density lipoprotein in determination of postprandial lipid and lipoprotein responses. J Clin Endocrinol Metab 75, 465471.
37. Griffin, BA (2013) Lipid metabolism. Surgery (Oxford) 31, 267272.
38. Johnstone, AM, Faber, P, Gibney, ER, et al. (2002) Effect of an acute fast on energy compensation and feeding behaviour in lean men and women. Int J Obes Relat Metab Disord 26, 16231628.
39. Levitsky, DA & DeRosimo, L (2010) One day of food restriction does not result in an increase in subsequent daily food intake in humans. Physiol Behav 99, 495499.
40. Nair, K, Woolf, P, Welle, S, et al. (1987) Leucine, glucose, and energy metabolism after 3 days of fasting in healthy human subjects. Am J Clin Nutr 46, 557562.
41. Mansell, P & Macdonald, I (1990) The effect of starvation on insulin-induced glucose disposal and thermogenesis in humans. Metabolism 39, 502510.
42. Webber, J & Macdonald, I (1994) The cardiovascular, metabolic and hormonal changes accompanying acute starvation in men and women. Br J Nutr 71, 437447.
43. Hoeks, J, van Herpen, NA, Mensink, M, et al. (2010) Prolonged fasting identifies skeletal muscle mitochondrial dysfunction as consequence rather than cause of human insulin resistance. Diabetes 59, 21172125.
44. Dauncey, MJ (1980) Metabolic effects of altering the 24-h energy-intake in man, using direct and indirect calorimetry. Br J Nutr 43, 257269.
45. de Boer, JO, Vanes, AJH, Roovers, LCA, et al. (1986) Adaptation of energy-metabolism of overweight women to low-energy intake studied with whole-body calorimeters. Am J Clin Nutr 44, 585595.
46. Mittendorfer, B, Horowitz, J & Klein, S (2001) Gender differences in lipid and glucose kinetics during short-term fasting. Am J Physiol Endocrinol Metab 281, E1333E1339.

Keywords

Investigation into the acute effects of total and partial energy restriction on postprandial metabolism among overweight/obese participants

  • Rona Antoni (a1), Kelly L. Johnston (a2), Adam L. Collins (a1) and M. Denise Robertson (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed