Skip to main content Accessibility help
×
Home
Hostname: page-component-5959bf8d4d-bmjgf Total loading time: 0.449 Render date: 2022-12-08T03:01:35.649Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Opioid peptides encrypted in intact milk protein sequences

Published online by Cambridge University Press:  09 March 2007

Hans Meisel*
Affiliation:
Bundesanstalt für Milchforschung, Institut für Chemie und Physik, Kiel, Germany
R. J. FitzGerald
Affiliation:
Life Science Department, University of Limerick, Limerick, Ireland
*
*Corresponding author: H Meisel, phone +49 431 609 2260, fax +49 431 609 2300, email meisel@bafm.de
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Opioid agonistic and antagonistic peptides which are inactive within the sequence of the precursor milk proteins can be released and thus activated by enzymatic proteolysis, for example during gastrointestinal digestion or during food processing. Activated opioid peptides are potential modulators of various regulatory processes in the body. Opioid peptides can interact with subepithelial opioid receptors or specific luminal binding sites in the intestinal tract. Furthermore, they may be absorbed and then reach endogenous opioid receptors.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2000

References

Antila, P, Paakkari, I, Järvinen, A, Mattila, MJ, Laukkanen, M, Pihlanto-Leppälä, A, Mäntsälä, P & Hellman, J (1991) Opioid peptides derived from in-vitro proteolysis of bovine whey proteins. International Dairy Journal 1, 215229.CrossRefGoogle Scholar
Brandsch, M, Brust, P, Neubert, K & Ermisch, A (1994) β-Casomorphins – chemical signals of intestinal transport systems.In β-Casomorphins and Related Peptides: Recent Developments, 207219 [Brantl, V and Teschemacher, H,editors]. Weinheim: VCH.Google Scholar
Brantl, V, Teschemacher, H, Bläsig, J, Henschen, A & Lottspeich, F (1981) Opioid activities of β-casomorphins. Life Sciences 28, 19031909.CrossRefGoogle ScholarPubMed
Carnie, J, Minter, S, Oliver, S, Perra, F & & Metzlaff, M (1989) Nutritional compositions containing β-casomorphins. UK Patent Application GB 2214810 A.Google Scholar
Chang, KJ, Cuatrecasas, JP, Wei, ET & Chang, JK (1982) Analgesic activity of intracerebroventricular administration of morphiceptin and β-casomorphins: Correlation with the morphine (μ) receptor binding affinity. Life Sciences 30, 15471551.CrossRefGoogle Scholar
Chang, KJ, Killian, A, Hazum, E & Cuatrecasas, P (1981) Morphiceptin: a potent and specific agonist for morphine (μ) receptors. Science 212, 7577.CrossRefGoogle ScholarPubMed
Chiba, H, Tani, F & Yoshikawa, M (1989) Opioid antagonist peptides derived from β-casein. Journal of Dairy Research 56, 363366.CrossRefGoogle Scholar
Chiba, H & Yoshikawa, M (1986) Biologically functional peptides from food proteins: new opioid peptides from milk proteins.In Protein Tailoring for Food and Medical Uses, 123153 [Feeney, RE and Whitaker, JR, editors]. New York: Marcel Dekker.Google Scholar
Daniel, H, Vohwinkel, M & Rehner, G (1990) Effect of casein and β-casomorphins on gastrointestinal motility in rats. Journal of Nutrition 120, 252257.CrossRefGoogle ScholarPubMed
Daniel, H, Wessendorf, A, Vohwinkel, M & Brantl, V (1990) Effect of D-Ala,Tyr5-β-casomorphin-5-amide on gastrointestinal functions.In β-Casomorphins and Related Peptides, 95104 [Nyberg, F and Brantl, V, editors]. Uppsala: Fyris-Tryck AB.Google Scholar
Elitsur, Y & Luk, GD (1991) Beta-casomorphin (BCM) and human colonic lamina propria lymphocyte proliferation. Clinical and Experimental Immunology 85, 493497.CrossRefGoogle ScholarPubMed
Erll, G, Hahn, A, Brantl, V & Daniel, H (1994) β-Casomorphins and intestinal net fluid transport in vivo.In β-Casomorphins and Related Peptides: Recent Developments 143149 [Brantl, V and Teschemacher, H, editors]. Weinheim: VCH.Google Scholar
Fiat, AM, Jollès, P (1989) Caseins of various origins and biologically active casein peptides and oligosaccharides: structural and physiological aspects. Molecular and Cellular Biochemistry 87, 530.CrossRefGoogle ScholarPubMed
Hamel, H, Kielwein, G & Teschemacher, H (1985) β-casomorphin immunoreactive materials in cow's milk incubated with various bacterial species. Journal of Dairy Research 52, 139148.CrossRefGoogle Scholar
Höllt, V (1983) Multiple endogenous opioid peptides. Trends in Neuroscience 6, 2426.CrossRefGoogle Scholar
Juillard, V, Laan, H, Kunji, ERS, Jeronimus-Stratingh, CM, Bruins, AP & Konings, WN (1995) The extracellular PI-type proteinase of Lactococcus lactis hydrolyzes β-casein into more than one hundred different oligopeptides. Journal of Bacteriology 177, 34723478.CrossRefGoogle ScholarPubMed
Loukas, S, Panetsos, F, Donga, E & Zioudrou, C (1990) Selective δ-antagonist peptides, analogs of a-casein exorphin, as probes for the opioid receptor.In β-Casomorphins and Related Peptides, 6575 [Nyberg, F and Brantl, V, editors]. Uppsala: Fyris-Tryck AB.Google Scholar
Loukas, S, Varoucha, D, Zioudrou, C, Streaty, RA & Klee, WA (1983) Opioid activities and structures of a-casein-dervied exorphins. Biochemistry 22, 45674573.CrossRefGoogle ScholarPubMed
Mansfeld, R, Kautni, J, Grunert, E, Brantl, V, Jöchle, W (1990) Clinical application of bovine β-casomorphins for treatment of calf diarrhea.In β-Casomorphins and Related Peptides, 105108 [Nyberg, N and Brantl, V, editors]. Uppsala: Fyris-Tryck AB.Google Scholar
Matthies, H, Stark, H & Hartrodt, B (1984) Derivatives of β-casomorphins with high analgesic potency. Peptides 5, 463470.CrossRefGoogle ScholarPubMed
Meisel, H (1986) Chemical characterization and opioid activity of an exorphin isolated from in vivo digests of casein. FEBS Letters 196, 223227.CrossRefGoogle ScholarPubMed
Meisel, H (1997) Biochemical properties of regulatory peptides derived from milk proteins. Biopolymers (Peptide Science) 43, 119128.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Meisel, H (1997) Biochemical properties of bioactive peptides derived from milk proteins: potential nutraceuticals for food and pharmacological applications. Lifestock and Production Science 50, 125138.CrossRefGoogle Scholar
Meisel, H & Bockelmann, W (1999) Bioactive peptides encrypted in milk proteins: proteolytic activation and trophofunctional properties. Antonie van Leeuwenhoek 76, 207215.CrossRefGoogle ScholarPubMed
Meisel, H & Schlimme, E (1996) Bioactive peptides derived from milk proteins: ingredients for functional foods?. Kieler Milchwirtschaftliche Forschungsberichte 48, 343357.Google Scholar
Mentz, P, Neubert, K, Liebmann, C, Hoffmann, S, Schrader, U & Barth, A (1990) Pharmacological effects of β-casomorphins on the cardiadic function.In β-Casomorphins and Related Peptides, 133139 [Nyberg, N and Brantl, V, editors]. Uppsala: Fyris-Tryck AB.Google Scholar
Mierke, DF, Nößner, G, Schiller, PW & Goodman, M (1990) Morphiceptin analogs containing 2-aminocyclopentane carboxylic acid as a peptidomimetic for proline. International Journal of Peptide Research 35, 3445.Google ScholarPubMed
Panksepp, J, Normansell, L, Siviy, S, Rossi, J & Zolovick, AJ (1984) Casomorphins reduce separation distress in chicks. Peptides 5, 829831.CrossRefGoogle ScholarPubMed
Paroli, E (1988) Opioid peptides from food (the exorphins). World Reviews of Nutrition and Dietetics 55, 5897.CrossRefGoogle Scholar
Pihlanto-Leppälä, A, Antila, P, Mäntsälä, P & Hellman, J (1994) Opioid peptides produced by in-vitro proteolysis of bovine caseins. International Dairy Journal 4, 291301.CrossRefGoogle Scholar
Rokka, T, Syväoja, E-L, Tuominen, J & Korhonen, H (1997) Release of bioactive peptides by enzymatic proteolysis of Lactobacillus GG fermented UHT milk. Milchwissenschaft 52, 675678.Google Scholar
Schusdziarra, V, Schick, R, de la Fuente, A, Holland, A, Brantl, V & Pfeiffer, EF (1983) Effect of β-casomorphins on somatostatin release in dogs. Endocrinology 112, 19481951.CrossRefGoogle ScholarPubMed
Schusdziarra, V, Schick, R, de la Fuente, A, Specht, J, Klier, M, Brantl, V & Pfeiffer, EF (1983) Effect of β-casomorphins and analogs on insulin release in dogs. Endocrinology 112, 885889.CrossRefGoogle ScholarPubMed
Svedberg, J, de Haas, J, Leimenstoll, G, Paul, F & Teschemacher, H (1985) Demonstration of β-casomorphin immunoreactive materials in in vitro digests of bovine milk and in small intestine contents after bovine milk ingestion in adult humans. Peptides 6, 825830.CrossRefGoogle ScholarPubMed
Tani, F, Shiota, A, Chiba, H & Yoshikawa, M (1994) Serorphin, an opioid peptide derived from bovine serum albumin.In β-Casomorphins and Related Peptides: Recent Developments, 4953 [Brantl, V and Teschemacher, H, editors]. Weinheim: VCH.Google Scholar
Teschemacher, H & Koch, G (1990) β-Casomorphins: possible physiological significance β-Casomorphins and Related Peptides 143149 [Nyberg, N and Brantl, V, editors]. Weinheim: VCH.Google Scholar
Teschemacher, H, Koch, G & Brantl, V (1994) Milk protein derived atypical opioid peptides and related compounds with opioid antagonist activity.In β-Casomorphins and Related Peptides: Recent Developments, 317 [Brantl, V and Teschemacher, H, editors]. Weinheim: VCH.Google Scholar
Teschemacher, H, Koch, G & Brantl, V (1997) Milk protein-derived opioid receptor ligands. Biopolymers (Peptide Science) 43, 99117.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Teschemacher, H, Brantl, V, Henschen, A, Lottspeich, F (1990) β-Casomorphins – β-casein fragments with opioid activity: detection and structure.In β-Casomorphins and Related Peptides: Recent Developments, 914 [Brantl, V and Teschemacher, H, editors]. Weinheim: VCH..Google Scholar
Teschemacher, H, Umbach, M, Hamel, U, Praetorius, K, Ahnert-Hilger, G, Brantl, V, Lottspeich, F & Henschen, A (1986) No evidence for the presence of β-casomorphins in human plasma after ingestion of cows' milk or milk products. Journal of Dairy Research 53, 135138.CrossRefGoogle ScholarPubMed
Tomé, D, Dumontier, AM, Hautefeuille, M & Desjeux, JF (1987) Opiate activity and transepithelial passage of intact β-casomorphins in rabbit ileum. American Journal of Physiology 253, G737-G744.Google ScholarPubMed
Umbach, M, Teschemacher, H, Praetorius, K, Hirschhäuser, R & Bostedt, H (1985) Demonstration of a β-casomorphin immunoreactive material in the plasma of newborn calves after milk intake. Regulatory Peptides 12, 223230.CrossRefGoogle ScholarPubMed
Yen, SSC, Quigley, ME, Reid, RL, Ropert, JF & Cetel, NS (1985) Neuroendocrinology of opioid peptides and their role in the control of gonadotropin and prolactin secretion. American Journal of Obsterics and Gynecology 152, 485493.CrossRefGoogle ScholarPubMed
Yoshikawa, M, Tani, F & Chiba, H (1988) Structure–activity relationship of opioid antagonist peptides derived from milk proteins Peptide Chemistry 473476 [Shiba, T, editors]. Osaka: Protein Research Foundation.Google Scholar
Yoshikawa, M, Tani, F, Shiota, H, Usui, H, Kurahashi, K & Chiba, H (1994) Casoxin D, an opioid antagonist/ileum-contracting/vasorelaxing peptide derived from human αS1-casein β-Casomorphins and Related Peptides: Recent Developments 4348 [Brantl, V and Teschemacher, H, editors]. Weinheim: VCH..Google Scholar
You have Access
129
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Opioid peptides encrypted in intact milk protein sequences
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Opioid peptides encrypted in intact milk protein sequences
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Opioid peptides encrypted in intact milk protein sequences
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *