Skip to main content
×
Home
    • Aa
    • Aa

Retinoid metabolism in the rat small intestine

  • Simmy Thomas (a1), Ramamoorthy Prabhu (a1) and Kunissery A. Balasubramanian (a1)
Abstract

Vitamin A (retinol) is essential for epithelial cell growth, differentiation and proliferation. The absorption of retinol occurs in the small intestine, and the metabolism of this vitamin is not well studied in this organ. The intestinal epithelium has a high rate of cell proliferation and differentiation, and the present study looked at the level of retinoids and metabolizing enzymes involved in their interconversion along the villus–crypt axis under normal conditions. Intestine was removed from control rats, and enterocytes at various stages of maturation and differentiation were quantified by the metal chelation method. Using HPLC, various retinoid concentrations in the cell homogenate and the metabolizing enzymes in the cytosol were quantified. The proliferating crypt cells were found to have a higher level of retinoic acid as well as of the enzymes involved in its formation, such as retinaldehyde oxidase and retinol dehydrogenase, compared with the villus cells, suggesting a possible role for this compound in intestinal epithelial cell proliferation and differentiation. The high level of retinol and high retinaldehyde reductase activity in the villus cells suggest the important role played by this enzyme in the conversion of dietary β-carotene to retinol via retinaldehyde. In summary, this study has given for the first time a detailed analysis of the retinoid levels and metabolizing enzymes in different cell populations in the rat small intestinal epithelium.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Retinoid metabolism in the rat small intestine
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Retinoid metabolism in the rat small intestine
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Retinoid metabolism in the rat small intestine
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: Dr K. A. Balasubramanian, fax +91 (416) 2232035, email wubalu@hotmail.com, wellcome@cmcvellore.ac.in
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 78 *
Loading metrics...

Abstract views

Total abstract views: 109 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th September 2017. This data will be updated every 24 hours.