Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-15T10:48:49.642Z Has data issue: false hasContentIssue false

Variations through the day of hepatic and muscular cathepsin A (carboxypeptidase A; EC 3.4.12.2), C (dipeptidyl peptidase; EC 3.4.14.1) and D (endopeptidase D; EC 3.4.23.5) activities and fee amino acids of blood in rats: influence of feeding schedule

Published online by Cambridge University Press:  09 March 2007

Christiane Obled M. Arnal
Affiliation:
Laboratoire d'Etude du Métabolisme Azoté, INRA Theix-63I 10Beaumont, France
C. Valin
Affiliation:
Laboratoire d'Etude du Métabolisme Azoté, INRA Theix-63I 10Beaumont, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Growing rats were fed either ad lib. or with six (equal) meals offered every 4 h (form 10.00 hours). Rats of each group were killed at intervals of 4 h begining at 11.00 hours. Activities of cathepsin A (carboxy-peptidase A; EC 3.4. 12. 2), C (dipeptidyl peptidase; EC 3.4.14.1) and D (endopeptidase D EC 3.4.23.5) were measured in liver and muscle homogenates and free amino acids in blood were determined.

2. In the rats fed ad lib. activities of carboxypeptidase A and endopeptidase D in liber and muscle showed significant variation, with maximum activity in the light period. In general, meal-feeding only caused minor differences in cathepsin activities; although significant differences occurred for carboxypeptidase A. For the latter enzyme a peak in activity occurred in the dark as well as in the light period.

3. Irrespective of the feeding schedule, the lower concentration of free essential amino acids of blood occurred generally during the night period. With the controlled-feeding schedule there is an increase of essential amino acids and a slight decrease of non-essential amino acids of blood.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1980

References

REFERENCES

Amal, M., Fauconneau, G. & Pech, R. (1971). Annls Biol. anim. Bioch. Biophys. 11, 245.Google Scholar
Bhattacharya, R. & Mayersbach, H. (1975). Chronobiologia suppl. 1, 12 (Abstr).Google Scholar
Bird, J. W. C., Berg, T. & Leathem, J. L. (1968). Proc. Soc. exp. Biol. Med. 127, 182.CrossRefGoogle Scholar
Canonico, P. G. & Bird, J. W. C. (1970). J. Cell Biol. 45, 321.CrossRefGoogle Scholar
Coffey, J. W. & De Duve, C. (1968). J. biol. Chem. 243, 3255.CrossRefGoogle Scholar
Dayton, W. R., Goll, D. E. & Reville, W. J. (1975). Proc. Meat Conf. p. 214.Google Scholar
Dean, R. T. (1975). Eur. J. Biochem. 58, 9.CrossRefGoogle Scholar
Femstrom, J. D., Larin, F. & Wurtman, R. J. (1971). Life Sci. 10, 813.CrossRefGoogle Scholar
Filkins, J. P. (1970). Am. J. Physiol. 219, 923.CrossRefGoogle Scholar
Goldbarg, J. A. & Ruttenberg, A. M. (1958). Cancer 11, 83.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Grizard, J., Obled, C., Arnal, M. & Pion, R. (1976). Compt. rend. Soc. Chim. Biol. 170, 1201.Google Scholar
Grizard, J., Prugnaud, J. & Pion, R. (1974). C. r. Soc. Chim. Biol. 168, 738.Google Scholar
Halberg, F., Johnson, E., Nelson, W., Runge, W. & Sothern, R. (1972). Physiol. Teacher 1, 1.Google Scholar
Iodice, A. A., Leon, V. & Weinstock, I. M. (1966). Archs Biochem. Biophys. 117, 477.CrossRefGoogle Scholar
Li, J. B., Rannels, S. R., Burkart, M. E. & Jefferson, L. S. (1975). Fedn Proc. Fedn Am. Socs exp. Biol. 34, 654.Google Scholar
Lowry, O. H., Rosebrough, N. J. & Carr, A. L. (1951). J. biol. Chem. 193, 265.CrossRefGoogle Scholar
McDonald, J. K., Zeitman, B. B., Reilly, T. J. & Ellis, S. (1969). J. biol. Chem. 244, 2693.CrossRefGoogle Scholar
Moore, S., Spackmann, D. H. & Stein, H. H. (1958). Analyt. Chem. 30, 1185.CrossRefGoogle Scholar
Munro, H. N. (1964). In Mammalian Protein metabolism, vol. 1, p. 381 [Munro, H. N. and Allison, J. B., New York: Academic Press.CrossRefGoogle Scholar
Neely, A. N. & Mortimore, G. E. (1973). Biochim. biophys. Acta 338, 458.CrossRefGoogle Scholar
Obled, C., Amal, M. & Fauwnneau, G. (1975). Annls Biol. anim. Bioch. Biophys. 15, 73.CrossRefGoogle Scholar
Obled, C., Amal, M. & Grizard, J. (1977). C. r. Séanc. Acad. Sci., Paris D 284, 195.Google Scholar
Pawlak, M. & Pion, R. (1968). Annls Biol. anim. Bioch. Biophys. 8, 517.CrossRefGoogle Scholar
Pontremoli, S., Melloni, E., De Flora, A., Accorsi, A., Balestrero, F., Tsolas, O., Horecker, B. L. & Poole, B. (1976). Biochimie 58, 148.CrossRefGoogle Scholar
Rebolledo, O. R. & Gagliardino, J. J. (1971). J. Interdisc. cycle Res. 2, 101.CrossRefGoogle Scholar
Reinberg, A. (1974). Chronobiologia 1, 22.Google Scholar
Segal, H. L., Winckler, J. R. & Miyagi, M. P. (1974). J. biol. Chem. 249, 6364.CrossRefGoogle Scholar
Snedecor, G. W. & Cochran, W. G. (1971). Méthodes Statistiques. Paris: Association de coordination technique Agricole.Google Scholar
Valin, C. (1967). Annls Biol. anim. Biochem. Biophys. 7, 475.CrossRefGoogle Scholar
Wurtman, R. J. (1970). In Mammalian Protein metabolism, vol. 4, p. 445 [Munro, H. N. and Allison, J. B., editors]. New York: Academic Press.CrossRefGoogle Scholar
Wurtman, R. J., Rose, C. M., Chou, C. & Larin, F. F. (1968). New Engl. J. Med. 279, 171.CrossRefGoogle Scholar
Young, J. O., Liao, F., Hanes, D. & Tappel, A. L. (1969). Fedn. Proc. Fedn. Am. Socs exp. Biol. 28, 266.Google Scholar
Young, V. R., Vilaire, G., Newbeme, P. M. & Wilson, R. B. (1973). J. Nutr. 103, 720.CrossRefGoogle Scholar