Skip to main content
×
Home

Biochemical responses induced in galls of three Cynipidae species in oak trees

  • I. Kot (a1), A. Jakubczyk (a2), M. Karaś (a2) and U. Złotek (a2)
Abstract
Abstract

Gall-making Cynipidae manipulate the leaves of host plant to form galls where offspring find shelter and food. The relationship between oak gallwasp and biochemical mechanisms of galls still requires a better understanding. So, in this research, protein and phenolic compound contents, as well as the activity of antioxidative enzymes and pathogenesis-related (PR) proteins were determined. Galls caused by asexual generation of Cynips quercusfolii L., Neuroterus numismalis (Fourc.) and N. quercusbaccarum L., as a model were used. All cynipid species modified the protein levels of gall tissues, but they cannot be treated as protein sinks. Significantly higher levels of phenols were observed in the galled leaves and galls of all cynipid species when compared with the control tissues. Peroxidase and polyphenol oxidase activity was usually low or showed no activity in galled tissues of all species. PR proteins, such as chitinase and β-1,3-glucanase, had a similar activity profile. Their activity significantly increased in the leaves with galls of all cynipid species, especially those infested with C. quercusfolii. Data generated in this study clearly indicate that galling Cynipidae manipulate the biochemical machinery of the galls for their own needs. However, the pattern of the biochemical features of leaves with galls and galled tissues depends on gall-making species.

Copyright
Corresponding author
*Author for correspondence Phone: +48 815248102 E-mail: izabela.kot@up.lublin.pl
References
Hide All
Albert S., Padhiar A., Gandhi D. & Nityanand P. (2011) Morphological, anatomical and biochemical studies on the foliar galls of Alstonia scholaris (Apocynaceae). Revista Brasileira de Botanica 34(3), 343358.
Allison S.D. & Schultz J.C. (2005) Biochemical responses of chestnut oak to a galling cynipid. Journal of Chemical Ecology 31(1), 151166.
Almagro L., Gómez Ros L.V., Belchi-Navarro S., Bru R., Ros Barceló A. & Pedreňo M.A. (2009) Class III peroxidases in plant defence reactions. Journal of Experimental Botany 60(2), 377390.
Antony B. & Palaniswami M.S. (2006) Bemisia tabaci feeding induces pathogenesis-related proteins in cassava (Manihot esculenta Crantz). Indian Journal of Biochemistry and Biophysics 43, 182185.
Ashry N.A. & Mohamed H.I. (2012) Impact of secondary metabolites and related enzymes in flax resistance and/or susceptibility to powdery mildew. African Journal of Biotechnology 11(5), 10731077.
Barbehenn R., Cheek S., Gasperut A., Lister E. & Maben R. (2005) Phenolic compounds in red oak and sugar maple leaves have prooxidant activities in the midgut fluids of Malacosoma disstria and Orgyia leucostigma caterpillars. Journal of Chemical Ecology 31(5), 969988.
Biswas S.M., Chakraborty N. & Baidyanath P. (2014) Foliar gall and antioxidant enzyme responses in Alstonia scholaris, R. Br. After psylloid herbivory – an experimental and statistical analysis. Global Journal of Botanical Science 2, 1220.
Boller T., Gehri A., Mauch F. & Vögeli U. (1983) Chitinase in bean leaves: induction by ethylene, purification, properties, and possible function. Planta 157, 2231.
Bradford M.M. (1976) A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.
Castro M.S. & Fontes W. (2005) Plant defense and antimicrobial peptides. Protein and Peptide Letters 12(1), 1318.
Chance B. & Maehly A.C. (1955) Assay of catalases and peroxidases. Methods in Enzymology 2, 764775.
Chen H., Gonzales-Vigil E., Wilkerson C.G. & Howe G.A. (2007) Stability of plant defense proteins in the gut of insect herbivores. Plant Physiology 143, 19541967.
El-Khallal S.M. (2007) Induction and modulation of resistance in tomato plants against Fusarium wilt disease by bioagent fungi (arbuscular mycorrhiza) and/or hormonal elicitors (jasmonic acid & salicylic acid): 2-Changes in the antioxidant enzymes, phenolic compounds and pathogen related-proteins. Australian Journal of Basic and Applied Sciences 1(4), 717732.
Fürstenberg-Hägg J., Zagrobelny M. & Bak S. (2013) Plant defense against insect herbivores. International Journal of Molecular Sciences 14, 1024210297. doi: 10.3390/ijms140510242.
Gailite A., Andersone U. & Ievinsh G. (2005) Arthropod-induced neoplastic formations on trees change photosynthetic pigment levels and oxidative enzyme activities. Journal of Plant Interactions 1(1), 6167.
Golan K., Rubinowska K. & Górska-Drabik E. (2013) Physiological and biochemical responses of fern Nephrolepsis biserrata (Sw.) Schott. to Coccus hesperidum L. infestation. Acta Biologica Cracoviensia Series Botanica 55/1, 9398. doi: 10.2478/abcsb-2013-0007.
Gulsen O., Eickhoff T., Heng-Moss T., Shearman R., Baxendale F., Sarath G. & Lee D. (2010) Characterization of peroxidase changes in resistant and susceptible warm-season turfgrasses challenged by Blissus occiduus . Arthropod-Plant Interactions 4, 455.
Harper L.J., Schönrogge K., Lim K.Y., Francis P. & Lichtenstein C.P. (2004) Cynipid galls: insect-induced modifications of plant development create novel plant organs. Plant, Cell and Environment 27, 327335.
Hartley S.E. (1998) The chemical composition of plant galls: are levels of nutrients and secondary compounds controlled by the gall-former? Oecologia 113, 492501.
He J., Chen F., Chen S., Lv G., Deng Y., Fang W., Liu Z., Guan Z. & He C. (2011) Chrysanthemum leaf epidermal surface morphology and antioxidant and defense enzyme activity in response to aphid infestation. Journal of Plant Physiology 16, 687693.
Huang M.Y., Huang W.D., Chou H.M., Lin K.H., Chen C.C., Chen P.J., Chang Y.T. & Yang C.M. (2014) Leaf-derived cecidomyiid galls are sinks in Machilus thunbergii (Lauraceae) leaves. Physiologia Plantarum 152, 475485.
Huang M.Y., Huang W.D., Chou H.M., Chen C.C., Chen P.J., Chang Y.T. & Yang C.M. (2015) Structural, biochemical and physiological characterization of photosynthesis in leaf-derived cup-shaped galls on Litsea acuminata . BMC Plant Biology 15, 61. doi: 10.1186/s12870-015-0446-0.
Inbar M., Mayer R. & Doostdar H. (2003) Induced activity of pathogenesis related (PR) proteins in aphid galls. Symbiosis 34, 110.
Isaias R.M.S., Oliveira D.C., Carneiro R.G.S. & Kraus J.E. (2014) Developmental anatomy of galls in the neotropics: arthropods stimuli versus host plant constraints. pp. 1534 in Fernandes G.W. & Santos J.C. (Eds) Neotropical Insect Galls. Science+Business Media Dordrecht, Springer. DOI 10.1007/978-94-017-8783-3_2.
Jayamohan N.S. & Kumudini B.S. (2011) Host patogen interaction at the plant cell wall. International Research Journal of Pharmacy and Pharmacology 1(10), 242249.
Khattab H. (2007) The defence mechanism of cabbage plant against phloem-sucking aphid (Brevicoryne brassicae L.). Australian Journal of Basic and Applied Sciences 1, 5662.
Kot I., Kmieć K., Górska-Drabik E., Golan K., Rubinowska K. & Łagowska B. (2015) The effect of mealybug Pseudococcus longispinus (Targioni Tozzetti) infestation of different density on physiological responses of Phalaenopsis × hybridum ‘Innocence’. Bulletin of Entomological Research 105, 373380. doi: 10.1017/S000748531500022X.
Larson K.C. & Whitham T.G. (1991) Manipulation of food resources by a gall-forming aphid: the physiology of sinksource interactions. Oecologia 88, 1521.
Larson K.C. & Whitham T.G. (1997) Competition between gall aphids and natural plant sinks: plant architecture affects resistance to galling. Oecologia 109, 575582.
Lattanzio V., Lattanzio V.M.T. & Cardinali A. (2006) Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. pp. 2367 in Imperato F. (Ed.) Phytochemistry: Advances in Research. Trivandrum Kerala, Research Signpost.
Mayer R.T., Inbar M., McKenzie C.L., Shstters R., Borowicz V., Albrecht U., Powell C.A. & Doostdar H. (2002) Multitrophic interactions of the Silverleaf whitefly, host plants, competing herbivores, and phytopathogens. Archives of Insect Biochemistry and Physiology 51, 151169.
McCollum T.G., Doostdar H., McDonald R.E., Shapiro J.P., Mayer R.T., Timmer L.W. & Sonoda R.M. (1995) Exploitation of plant pathogenesis-related proteins for enhanced pest resistance in citrus. Proceedings of the Florida State Horticultural Society 108, 8892.
Miller G.L. (1959) Use of dinitrosalicylic acid for determination of reducing sugar. Analytical Chemistry 31, 426428.
Mukherjee S., Lokesh G., Aruna A.S., Sharma S.P. & Sahay A. (2016) Studies on the foliar biochemical changes in the gall (Trioza fletcheri minor) infested tasar food plants Terminalia arjuna and Terminalia tomentosa . Journal of Entomology and Zoology Studies 4(1), 154158.
Musser R.O., Cipollini D.F., Hum-Musser S.M., Williams S.A., Brown J.K. & Felton G.W. (2005) Evidence that the caterpillar salivary enzyme glucose oxidase provides herbivore offense in Solanaceous plants. Archives of Insect Biochemistry and Physiology 58, 128137.
Ni X., Quisenberry S.S., Heng_Moss T., Markwell J., Sarath G., Klucas R. & Baxendale F. (2001) Oxidative responses of resistant and susceptible cerealaphid (Hemiptera: Aphididae) feeding. Journal of Economic Entomology 94, 743751.
Rifat H., Minhaj A.K., Mahboob A., Malik M.A., Malik Z.A., Javed M. & Saleem J. (2013) Chitinases: an update. Journal of Pharmacy And Bioallied Sciences 5(1), 2129. doi: 10.4103/0975-7406.106559.
Rocha S., Branco M., Vilas Boas L., Almeida M.H., Protasov A. & Mendel Z. (2013) Gall induction may benefit host plant: a case of a gall wasp and eucalyptus tree. Tree Physiology 33, 388397. doi: 10.1093/treephys/tpt009.
Rokas A., Melika G., Abe Y., Nieves-Aldrey J.L., Cook J.M. & Stone G.N. (2003) Lifecycle closure, lineage sorting, and hybridization revealed in a phylogenetic analysis of European oak gallwasps (Hymenoptera: Cynipidae: Cynipini) using mitochondrial sequence data. Molecular Phylogenetics and Evolution 26, 3645.
Sampson M.N. & Gooday G.W. (1998) Involvement of chitinases of Bacillus thuringiensis during pathogenesis in insects. Microbiology 144(8), 21892194.
Schönrogge K., Harper L.J. & Lichtenstein C.P. (2000). The protein content of tissues in cynipid galls (Hymenoptera: Cynipidae): similarities between cynipid galls and seeds. Plant Cell and Environment 23, 215222.
Shivashankar S., Sumathi M. & Ranganath H.R. (2012) Roles of reactive oxygen species and anti-oxidant systems in the resistance response of chayote fruit (Sechium edule) to melon fly [Bactrocera cucurbitae (Coquillett)]. Journal of Horticultural Science and Biotechnology 87(4), 391397.
Singh H., Dixit S., Verma P.C. & Kumar P. (2013) Differential peroxidase activities in three different crops upon insect feeding. Plant Signaling & Behavior 8, e25615. Available online at http://dx.doi.org/10.4161/psb.25615.
Singleton V.L., Orthofer R. & Lamuela-Raventos R.M. (1974) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology 299, 152178.
Soffan A., Alghamdi S.S. & Aldawood A.S. (2014) Peroxidase and polyphenol oxidase activity in moderate resistant and susceptible Vicia faba induced by aphis craccivora (Hemiptera: Aphididae) infestation. Journal of Insect Science 14, 285–291. doi: 10.1093/jisesa/ieu147.
Sprawka I., Ciepiela A., Sempruch C., Chrzanowski G., Sytykiewicz H. & Czerniewicz P. (2003) Nutritive value of soluble protein of spring triticale ears infested by the grain aphid (sitobion avenae /F./). Eelectronic Journal of Polish Agricultural Universities 6(2), #03. http://www.ejpau.media.pl/
Stone G.N. & Schönrogge K. (2003) The adaptive significance of insect gall morphology. Trends in Ecology & Evolution 18, 512522.
Stone G.N., Schönrogge K., Atkinson R.J., Bellido D. & Pujade-Villar J. (2002) The population biology of oak gall wasps (Hymenoptera: Cynipidae). Annual Review of Entomology 47, 633668.
Taggar G.K., Gill R.S., Gupta A.K. & Sandhu J.S. (2012) Fluctuations in peroxidase and catalase activities of resistant and susceptible black gram (Vigna mungo (L.) Hepper) genotypes elicited by Bemisia tabaci (Gennadius) feeding. Plant Signaling & Behavior 7(10), 13211329. doi: 10.4161/psb.21435.
Vázquez-Garcidueňas S., Leal-Morales C.A. & Herrera-Estrella A. (1998) Analysis of the β-1,3-glucanolytic system of the biocontrol agent Trichoderma harzianum . Applied and Environmental Microbiology 64, 14421446.
War A.R., Paulraj M.G., Ahmad T., Buhroo A.A., Hussain B., Ignacimuthu S. & Sharma H.C. (2012) Mechanisms of plant defense against insect herbivores. Plant Signaling & Behavior 7(10), 13061320.
Wei H., Zhikuan J. & Qingfang H. (2007) Effects of herbivore stress by Aphis medicaginis Koch. on the malondialdehyde contents and the activities of protective enzymes in different alfalfa varieties. Acta Ecologica Sinica 27, 21772183.
Wisserman K.W. & Lee C.Y. (1980) Purification of grape polyphenoloxidase with hydrophobic chromatography. Journal of Chromatography 192, 232235.
Zhao H., Zhang X., Xuel M. & Zhang X. (2015) Feeding of whitefly on tobacco decreases aphid performance via increased salicylate signaling. PLoS ONE 10, e0138584. doi: 10.1371/journal.pone.0138584.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of Entomological Research
  • ISSN: 0007-4853
  • EISSN: 1475-2670
  • URL: /core/journals/bulletin-of-entomological-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 3
Total number of PDF views: 21 *
Loading metrics...

Abstract views

Total abstract views: 116 *
Loading metrics...

* Views captured on Cambridge Core between 24th October 2017 - 12th December 2017. This data will be updated every 24 hours.