Skip to main content
×
Home
    • Aa
    • Aa

Effect of temperature on the phenology of Chilo partellus (Swinhoe) (Lepidoptera, Crambidae); simulation and visualization of the potential future distribution of C. partellus in Africa under warmer temperatures through the development of life-table parameters

  • N. Khadioli (a1), Z.E.H. Tonnang (a1), E. Muchugu (a1), G. Ong'amo (a1), T. Achia (a2) (a3), I. Kipchirchir (a2), J. Kroschel (a4) and B. Le Ru (a5)...
Abstract
Abstract

Maize (Zea mays) is a major staple food in Africa. However, maize production is severely reduced by damage caused by feeding lepidopteran pests. In East and Southern Africa, Chilo partellus is one of the most damaging cereal stem borers mainly found in the warmer lowland areas. In this study, it was hypothesized that the future distribution and abundance of C. partellus may be affected greatly by the current global warming. The temperature-dependent population growth potential of C. partellus was studied on artificial diet under laboratory conditions at six constant temperatures (15, 18, 20, 25, 28, 30, 32 and 35 °C), relative humidity of 75±5% and a photoperiod of L12:L12 h. Several non-linear models were fitted to the data to model development time, mortality and reproduction of the insect species. Cohort updating algorithm and rate summation approach were stochastically used for simulating age and stage structure populations and generate life-table parameters. For spatial analysis of the pest risk, three generic risk indices (index of establishment, generation number and activity index) were visualized in the geographical information system component of the advanced Insect Life Cycle modeling (ILCYM) software. To predict the future distribution of C. partellus we used the climate change scenario A1B obtained from WorldClim and CCAFS databases. The maps were compared with available data on the current distribution of C. partellus in Kenya. The results show that the development times of the different stages decreased with increasing temperatures ranging from 18 to 35 °C; at the extreme temperatures, 15 and 38 °C, no egg could hatch and no larvae completed development. The study concludes that C. partellus may potentially expands its range into higher altitude areas, highland tropics and moist transitional regions, with the highest maize potential where the species has not been recorded yet. This has serious implication in terms of food security since these areas produce approximately 80% of the total maize in East Africa.

Copyright
Corresponding author
*Author for correspondence Phone: 254 (0) 20 8632055: Fax: 254 (0) 20 8632001 or 8632002 E-mail: bleru@icipe.org
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

M.G. Abraham & M.J. Savage (2006) Potential impacts of climate change on the grain yield of maize for the midlands of KwaZulu-Natal, South Africa. Agriculture Ecosystems and Environment 115, 150160.

C.R.B. Baker (1991) The validation and use of a life-cycle simulation model for risk assessment of insect pests. Bulletin OEPP 21, 615622.

J.S. Bale , G.J. Masters , I.D. Hodkinson , C. Awmack , T.M. Bezemer , V.K. Brown , J. Buttefield , A. Buse , J.C. Coulson , J. Farrar , J.E.G. Good , R. Harrington , S. Hartley , T.H. Jones , R.L. Lindroth , M.C. Press , I. Symrnioudis , A.D. Watt & J.B. Whittaker (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology 8(1), 116.

J.L. Beaumont , L. Hughes & M. Poulsen (2005) Predicting species distributions: use of climate parameters in BIOCLIM and its impact on predictions of species current and future distribution. Ecological Modeling 186, 250269.

J.F. Briere , P. Pracros , A.Y. Le Roux & J.S. Pierre (1999) A novel rate model of temperature-dependent development for arthropods. Environmental Entomology 28(1), 2229.

J.E. Cairns , K. Sonder , P.H. Zaidi , N. Verhulst , G. Mahuku , R. Babu , S.K. Nair , B. Das , B. Govaerts , M.T. Vinayan , Z. Rashid , J. Noor , P. Devi , F. San Vicente & B.M. Prasanna (2012) Maize production in a changing climate: impacts, adaptation and mitigation strategies. pp. 158inD. Sparks (Ed.) Advances in Agronomy, vol. 114, Elsevier Inc. Academic Press.

A. Chabi-Olaye , C. Nolte , F. Schulthess & C. Borgemeister (2005) Relationships of intercropped maize, stem borer damage to maize yield and land-use efficiency in the humid forest of Cameroon. Bulletin of Entomological Research 95, 417425.

A. Challinor , T. Wheeler , C. Garforth , P. Craufurd & A. Kassam (2007) Assessing the vulnerability of food crop systems in Africa to climate change. Climatic Change 83(3), 381399.

L. Crozier & G. Dwyer (2006) Combing population-dynamic and ecophysiological models to predict climate- induced insect range shifts. The American Naturalist 167, 853866.

G.L. Curry , R.M. Feldman & K.C. Smith (1978) Stochastic model for a temperature-dependent population. Theoretical Population Biology 13, 197213.

C.A. Deutsch , J.J. Tewksbury , R.B. Huey , K.S. Sheldon , C.K. Ghalambor , D.C. Haak & P.R. Martin (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences 105(18), 66686672.

A.F. Dixon , A. Honěk , P. Keil , M.A.A. Kotela , A.L. Šizling & V. Jarošík (2009) Relationship between the minimum and maximum temperature thresholds for development in insects. Functional Ecology 23(2), 257264.

A.A. Ebenebe , J. Van den Berg & T.C. Van der Linde (2001) Farm management practices and farmers’ perceptions of stalk-borers of maize and sorghum in Lesotho. International Journal of Pest Management 47, 4148.

S.A. Estay , M. Lima & F.A. Labra (2009) Predicting insect pest status under climate change scenarios: combining experimental data and population dynamics modeling. Journal of Applied Entomology 133, 491499.

T. Hance , J. Van Baaren , P. Vernon & G. Boivin (2007) Impact of extreme temperatures on parasitoids in a climate change perspective. Annual Review of Entomology 52, 107126.

D.W. Hilbert & J.A. Logan (1983) Empirical model of nymphal development for the migratory grasshopper, Melanoplus sanguinipes (Orthoptera: Acrididae). Environmental Entomology 12, 15.

I.D. Hodkinson (1999) Species response to global environmental change or why ecophysiological models are important: a reply to Davis et al.. Journal of Animal Ecology 68, 12591262.

A.L.O.I.S. Honek , V.O.J.T.E.C.H. Jarosik & Z.D.E.N.K.A. Martinkova (2003) Effect of temperature on development and reproduction in Gastrophysa viridula (Coleoptera: Chrysomelidae). European Journal of Entomology 100(2), 295300.

J. Jaramillo , A. Chabi-Olaye , C. Kamonjo , A. Jaramillo , F.E. Vega , H.-M. Poehling & C. Borgemeister (2009) Thermal tolerance of the coffee berry borer Hypothenemus hamperi. Prediction of climate change on a tropical insect pest. PLoS ONE 4(8), e6487.

M. Kearney , W.P. Porter , C. Williams , S. Ritchie & A.A. Hoffmann (2009) Integrating biophysical models and evolutionary theory to predict climatic impacts on species’ ranges: the dengue mosquito Aedes aegypti in Australia. Functional Ecology 23(3), 528538.

R. Kfir (1997) Competitive displacement of Busseola fusca (Lepidoptera: Noctuidae) by Chilo partellus (Lepidoptera: Pyralidae). Annals of the Entomological Society of America 90, 620624.

R. Kfir , W.A. Overholt , Z.R. Khan & A. Polaszek (2002) Biology and management of economically important lepidopteran cereal stem borers in Africa. Annual Review of Entomology 47, 701713.

J.G. Kingsolver , H.A. Woods , L.B. Buckley , K.A. Potter , H.J. MacLean & J.K. Higgins (2011) Complex life cycles and the responses of insects to climate change. Integrative and Comparative Biology 51(5), 719732.

J. Kroschel , J. Sporleder , H.E.Z. Tonnang , H. Juarez , J.C. Carhuapoma & R. Simon (2013) Predicting climate-change-caused changes in global temperature on potato tuber moth Phthorimaea operculella (Zeller) distribution and abundance using phenology modeling and GIS mapping. Agricultural and Forest Meteorology 170, 228241.

M. Ladányi & L. Horváth (2010) A review of the potential climate change impact on insect populations. General and agricultural aspects. Applied Ecology and Environmental Research 8(2), 143152.

D.B. Lobell , M. Bänziger , C. Magorokosho & B. Vivek (2011) Nonlinear heat effects on African maize as evidenced by historical yield trials. Nature Climate Change 1(1), 4245.

J.A. Logan , D.J. Wollkind , S.C. Hoyt & L.K. Tanigoshi (1976) An analytic model for description of temperature dependent rate phenomena in arthropods. Environmental Entomology 5(6), 11331140.

J.A. Logan , J. Regniere & J.A. Powell (2003) Assessing the impacts of global warming on forest pest dynamics. Frontier in Ecology and the Environment 1, 130137.

B.S. Nietschke , D.M. Borchert , R.D. Magarey , D.D. Calvin & E. Jones (2007) A developmental database to support insect phenology models. Crop Protection 26, 14441448.

O.G. Ong'amo , B.P. Le Ru , S. Dupas , P. Moyal , P.-A. Calatayud & J.F. Silvain (2006) Distribution, pest status and agro-climatic preferences of maize in Kenya. Annales de la Société Entomologique de France (n.s) 42, 171177.

J.A. Patz & S.H. Olson (2006) Malaria risk and temperature: influences from global climate change and local land use practices. Proceeding of the National Academy of Science USA 103, 56355636.

L. Peacock & S. Worner (2006) Using analogous climates and global insect pest distribution data to identify potential sources of new invasive insect pests in New Zealand. New Zealand Journal of Zoology 33, 141145.

R.G. Pearson & T.P. Dawson (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography 12, 361371.

J.H. Porter , M.L. Parry & T.R. Carter (1991) The potential effects of climatic change on agricultural insect pests. Agricultural and Forest Meteorology 57(1), 221240.

J. Régnière , R. St-Amant & P. Duval (2012) Predicting insect distributions under climate change from physiological responses: spruce budworm as an example. Biological Invasions 14(8), 15711586.

W.J. Roltsch , M.A. Mayse & K. Clausen (1990) Temperature-dependent development under constant and fluctuating temperatures: comparison of linear versus nonlinear methods for modeling development of western rapeleaf skeletonizer (Lepidoptera: Zygaenidae). Environmental Entomology 19(6), 16891697.

C. Rosenzweig , D. Karoly , M. Vicarelli , P. Neofotis , Q. Wu , G. Casassa , A. Manzel , T.L. Root , N. Estrella , B. Seguin , P. Tryjanowski , C.L. Rawlins & A. Imeson (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453, 353357.

D.B. Roy , P. Rothery , D. Moss , E. Pollard & J.A. Thomas (2001) Butterfly numbers and weather: predicting historical trends in abundance and the future effects of climate change. Journal of Animal Ecology 70(2), 201217.

P.J. Sharpe & D.W. DeMichele (1977) Reaction kinetics of poikilotherm development. Journal of Theoretical Biology 64(4), 649670.

J.M. Slingo , A.J. Challinor , B.J. Hoskins & T.R. Wheeler (2005) Introduction: food crops in a changing climate. Philosophical Transactions of the Royal Society B: Biological Sciences 360(1463), 19831989.

M. Sporleder , J. Kroschel , M.R.G. Quispe & A. Lagnaoui (2004) A temperature-based simulation model for the potato tuberworm, Phthorimaea operculella Zeller (Lepidoptera; Gelechiidae). Environmental Entomology 33(3), 477486.

G.C. Stevens (1989) The latitudinal gradient and geographical range: how so many species coexist in the tropics. The American Naturalist 133, 240250.

R.W. Sutherst & G. Maywald (2005) A climate model of the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae): implications for invasion of new regions, particularly Oceania. Environmental Entomology 34(2), 317335.

J.S. Terblanche , S. Clusella-Trullas , J.A. Deer & S.L. Chown (2008) Thermal tolerance in a south-east African population if the tse-tse fly Glossina pallidipes (Diptera, Glossinidae): implications for forecasting climate change impacts. Journal of Insect Physiology 54, 114127.

J.J. Tewksbury , R.B. Huey & C.A. Deutsch (2008) Ecology-putting the heat on tropical animals. Science 320(5881), 12961297.

L.J. Thomson , S. Macfadyen & A.A. Hoffmann (2010) Predicting the effects of climate change on natural enemies of agricultural pests. Biological Control 52(3), 296306.

M. Trnka , F. Muška , D. Semerádová , M. Dubrovský , E. Kocmánková & Z. Žalud (2007) European corn borer life stage model: regional estimates of pest development and spatial distribution under present and future climate. Ecological Modelling 207(2), 6184.

T.L. Wagner , H.I. Wu , P.J. Sharpe , R.M. Schoolfield & R.N. Coulson (1984) Modeling insect development rates: a literature review and application of a biophysical model. Annals of the Entomological Society of America 77(2), 208225.

J.A. Zeh , M.M. Bonilla , E.J. Su , M.V. Padua , R.V. Anderson , D. Kaur , D.S. Yangn & D.W. Zeh (2012) Degrees of disruption: projected temperature increase has catastrophic consequences for reproduction in a tropical ectotherm. Global Change Biology 18(6), 18331842.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of Entomological Research
  • ISSN: 0007-4853
  • EISSN: 1475-2670
  • URL: /core/journals/bulletin-of-entomological-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: