Skip to main content
×
×
Home

ON SETS THAT MEET EVERY HYPERPLANE IN n-SPACE IN AT MOST n POINTS

  • JAN J. DIJKSTRA (a1) (a2) and JAN VAN MILL (a3)
Abstract

A simple proof that no subset of the plane that meets every line in precisely two points is an Fσ-set in the plane is presented. It was claimed that this result can be generalized for sets that meet every line in either one point or two points. No proof of this assertion is known, however. The main results in this paper form a partial answer to the question of whether the claim is valid. In fact, it is shown that a set that meets every line in the plane in at least one but at most two points must be zero-dimensional, and that if it is σ-compact then it must be a nowhere dense Gδ-set in the plane. Generalizations for similar sets in higher-dimensional Euclidean spaces are also presented.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of the London Mathematical Society
  • ISSN: 0024-6093
  • EISSN: 1469-2120
  • URL: /core/journals/bulletin-of-the-london-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed