Skip to main content

Ethical Dilemmas in Postnatal Treatment of Severe Congenital Hydrocephalus


Severe congenital hydrocephalus manifests as accumulation of a large amount of excess fluid in the brain. It is a paradigmatic example of a condition in which diagnosis is relatively straightforward and long-term survival is usually associated with severe disability. It might be thought that, should parents agree, palliative care and limitation of treatment would be clearly permissible on the basis of the best interests of the infant. However, severe congenital hydrocephalus illustrates some of the neuroethical challenges in pediatrics. The permissibility of withholding or withdrawing treatment is limited by uncertainty in prognosis and the possibility of “palliative harm.” Conversely, although there are some situations in which treatment is contrary to the interests of the child, or unreasonable on the grounds of limited resources, acute surgical treatment of hydrocephalus rarely falls into that category.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Ethical Dilemmas in Postnatal Treatment of Severe Congenital Hydrocephalus
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Ethical Dilemmas in Postnatal Treatment of Severe Congenital Hydrocephalus
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Ethical Dilemmas in Postnatal Treatment of Severe Congenital Hydrocephalus
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Hide All


1. Shaw, A. Dilemmas of “informed consent” in children. New England Journal of Medicine 1973;289(17):885–90; McCormick, RA. To save or let die: The dilemma of modern medicine. JAMA 1974;229(2):172–6; Duff, RS, Campbell, AG. Moral and ethical dilemmas in the special-care nursery. New England Journal of Medicine 1973;289(17):890–4.

2. Gillett G. Ashley, two born as one, and the best interests of a child. Cambridge Quarterly of Healthcare Ethics 25;2016:22–37.

3. In this article I focus on treatment decisions in the newborn period. Although withdrawal or withholding of treatment from newborn infants with predicted disability remains controversial, there is general acceptance that it is permissible in at least some circumstances. Wilkinson, D. Is it in the best interests of an intellectually disabled infant to die? Journal of Medical Ethics 2006;32(8):454–9.

4. McKechnie, L, Vasudevan, C, Levene, M. Neonatal outcome of congenital ventriculomegaly. Seminars in Fetal and Neonatal Medicine 2012;17(5):301–7.

5. Garne, E, Loane, M, Addor, MC, Boyd, PA, Barisic, I, Dolk, H. Congenital hydrocephalus—prevalence, prenatal diagnosis and outcome of pregnancy in four European regions. European Journal of Paediatric Neurology 2010;14(2):150–5.

6. See note 4, McKechnie et al. 2012.

7. See note 5, Garne et al. 2010.

8. One abnormality that is sometimes found in association with hydrocephalus is spina bifida, found in 27% of cases of hydrocephalus in California but in only 17% of cases of severe hydrocephalus in the UK. Jeng, S, Gupta, N, Wrensch, M, Zhao, S, Wu, YW. Prevalence of congenital hydrocephalus in California, 1991–2000. Pediatric Neurology 2011;45(2):6771; Hannon, T, Tennant, PW, Rankin, J, Robson, SC. Epidemiology, natural history, progression, and postnatal outcome of severe fetal ventriculomegaly. Obstetrics and Gynecology 2012;120(6):1345–53. Although the ethical considerations in infants with spina bifida overlap with those involved in infants with isolated hydrocephalus, there are also some differences in prognosis and the burden of treatment. For this article I consider the issues for the wider group of infants with SCH.

9. See note 4, McKechnie et al. 2012.

10. Cecchetto, G, Milanese, L, Giordano, R, Viero, A, Suma, V, Manara, R. Looking at the missing brain: Hydranencephaly case series and literature review. Pediatric Neurology 2013;48(2):152–8.

11. Devaseelan, P, Cardwell, C, Bell, B, Ong, S. Prognosis of isolated mild to moderate fetal cerebral ventriculomegaly: A systematic review. Journal of Perinatal Medicine 2010;38(4):401–9.

12. See note 4, McKechnie et al. 2012. Breeze, AC, Alexander, PM, Murdoch, EM, Missfelder-Lobos, HH, Hackett, GA, Lees, CC. Obstetric and neonatal outcomes in severe fetal ventriculomegaly. Prenatal Diagnosis 2007;27(2):124–9.

13. Vinchon, M, Rekate, H, Kulkarni, AV. Pediatric hydrocephalus outcomes: A review. Fluids and Barriers of the CNS 2012;9(1):18.

14. See note 13, Vinchon et al. 2012.

15. Prusseit, J, Simon, M, von der Brelie, C, Heep, A, Molitor, E, Volz, S, et al. Epidemiology, prevention and management of ventriculoperitoneal shunt infections in children. Pediatric Neurosurgery 2009;45(5):325–36.

16. See note 5, Garne et al. 2010; note 8, Hannon et al. 2012.

17. See note 12, Breeze et al. 2007.

18. See note 8, Hannon et al. 2012.

19. Chervenak, FA, McCullough, LB. Ethical dimensions of fetal neurology. Seminars in Fetal and Neonatal Medicine 2012;17(5):252–5; Chervenak, FA, McCullough, LB. Nonaggressive obstetric management: An option for some fetal anomalies during the third trimester. JAMA 1989;261(23):3439–40.

20. See note 19, Chervenak, McCullough 1989 and 2012.

21. These cases are based on a composite of real cases encountered.

22. See note 8, Hannon et al. 2012.

23. Wilkinson, D. The self-fulfilling prophecy in intensive care. Theoretical Medicine and Bioethics 2009;30(6):401–10.

24. Kennelly, MM, Cooley, SM, McParland, PJ. Natural history of apparently isolated severe fetal ventriculomegaly: Perinatal survival and neurodevelopmental outcome. Prenatal Diagnosis 2009;29(12):1135–40.

25. The 95% confidence interval for the rate of severe disability in live-born infants with severe SCH ranges from approximately 25% to 75%. Agresti, A, Coull, BA. Approximate is better than “exact” for interval estimation of binomial proportions. American Statistician 1998;52(2):119–26.

26. As other articles in this issue note, Andrew’s interests are clearly entwined with those around him, and any assessment of his best interests should take into account the context in which he lives and the effects of treatment on his caregivers. See note 2, Gillett 2016. Bowyer L. The ethical grounds for the best interests of the child. Cambridge Quarterly of Healthcare Ethics 2016;25:63–9. For this article I have set aside the interests of the family and caregivers.

27. Wilkinson, D. A life worth giving: The threshold for permissible withdrawal of treatment from disabled newborn infants. American Journal of Bioethics 2010;11(2):2032; Wilkinson, D. Death or Disability? The Carmentis Machine and Treatment Decisions for Critically Ill Children. Oxford: Oxford University Press; 2013.

28. See note 27, Wilkinson 2013, at 261–301.

29. Kulkarni, AV, Cochrane, DD, McNeely, PD, Shams, I. Medical, social, and economic factors associated with health-related quality of life in Canadian children with hydrocephalus. Journal of Pediatrics 2008;153(5):689–95.

30. See note 29, Kulkarni et al. 2008. There are significant limitations to the use of data of this kind for evaluating whether or not a child’s life is worth living. See note 27, Wilkinson 2013, at 184–94. It is also important and instructive to note that socioeconomic factors including family income and parental education had a significant impact on health utility scores in this study. Furthermore, the limited data that are available provide no information on the quality of life of caregivers or other family members, factors that may influence caregivers’ assessment of the child’s quality of life, and that may be of relevance to an assessment of the child’s best interests. See note 26, Bowyer 2016.

31. Chi, JH, Fullerton, HJ, Gupta, N. Time trends and demographics of deaths from congenital hydrocephalus in children in the United States: National Center for Health Statistics data, 1979 to 1998. Journal of Neurosurgery 2005;103(2 Suppl):113–18.

32. Moghtaderi, A, Rahimi-Movaghar, V, Safdari, M. Spontaneous brain rupture: A complication of untreated hydrocephalus. Clinical Neurology and Neurosurgery 2005;108(1):4851; Salvador, SF, Henriques, JC, Munguambe, M, Vaz, RM, Barros, HP. Hydrocephalus in children less than 1 year of age in northern Mozambique. Surgical Neurology International 2014;5:175.

33. Yashon, D, Jane, JA, Sugar, O. The course of severe untreated infantile hydrocephalus: Prognostic significance of the cerebral mantle. Journal of Neurosurgery 1965;23(5):509–16, at 510. Surgery was not performed on those who exhibited “thin mantles, large heads, or generally unimposing appearance”

34. Palliative harm is a possibility wherever palliative care would be permissible on the grounds of poor prognosis but long-term survival is a possibility. It is particularly a problem when life-sustaining treatments are limited in incompetent patients on the basis of neurological prognosis. Other examples include patients who have respiratory support withheld or withdrawn and sustain a period of hypoxia but nevertheless survive, or patients who have artificial nutrition withheld but sustain enough oral intake to survive (in a malnourished state). Furthermore, palliative harm may lead to additional harm and additional burden for caregivers and family. (I am grateful to Grant Gillett for highlighting this point.)

35. It is, though, difficult to find published data to support this clinical impression, in part because in such circumstances life-sustaining treatment is usually withdrawn. See note 23, Wilkinson 2009.

36. Shewmon, DA, Holmes, GL, Byrne, PA. Consciousness in congenitally decorticate children: Developmental vegetative state as self-fulfilling prophecy. Developmental Medicine and Child Neurology 1999;41(6):364–74; Merker, B. Consciousness without a cerebral cortex: A challenge for neuroscience and medicine. The Behavioural and Brain Sciences 2007;30(1):6381, discussion at 134. Both of these papers note that, contrary to some claims, surviving children with hydranencephaly do respond to their surroundings and hence do not have features of a persistent vegetative state.

37. Yamada, NK, Kodner, IJ, Brown, DE. When operating is considered futile: Difficult decisions in the neonatal intensive care unit. Surgery 2009;146(1):122–5.

38. Wilkinson, DJC, Savulescu, J. Knowing when to stop: Futility in the ICU. Current Opinion in Anesthesiology 2011;24(2):160–5.

39. See note 38, Wilkinson, Savulescu 2011.

40. King’s College Hospital NHS Foundation Trust v. T and Others [2014] EWHC 3315 (Fam). ZT was born prematurely, but at 8 months of age suffered a cardiorespiratory arrest with subsequent evidence of “catastrophic irreversible hypoxic-ischemic injury to the brain.” At 17 months of age he remained in intensive care, dependent on mechanical ventilation. In addition, he had developed progressive severe hydrocephalus. Medical professionals sought permission from the court to withdraw mechanical ventilation from ZT (against the wishes of ZT’s family). The court subsequently granted permission, and ZT died. Bingham J. Boy taken off life support after judge rules there is no hope of a “miracle” dies. Telegraph 2014 6 Oct; available at (last accessed 3 Mar 2015).

41. See note 40, King’s College NHS Trust v. T 2014, at 9, 10, 12.

42. However, some authors have argued that consciousness and pain may be mediated by subcortical structures and have pointed to evidence that children with hydranencephaly do appear to respond to aversive situations. See note 36, Merker 2007.

43. See note 27, Wilkinson 2013, at 67–9. However, it should be noted that such infants may also have substantial reductions in terms of wider goods that they appreciate—that is, in the benefits that should be balanced against suffering. Accordingly, it is possible that even if infants suffer relatively little, the overall balance of benefits and burdens is tipped against treatment.

44. Complications of shunt insertion such as shunt infection or blockage may cause more suffering. One possibility is that shunt insertion itself would be in a child’s best interests but shunt revision (particularly if repeated) would not be.

45. Wilkinson, D. Which newborn infants are too expensive to treat? Camosy and rationing in intensive care. Journal of Medical Ethics 2013;39(8):502–6.

46. Pham, AC, Fan, C, Owler, BK. Treating pediatric hydrocephalus in Australia: A 3-year hospital-based cost analysis and comparison with other studies. Journal of Neurosurgery. Pediatrics 2013;11(4):398401. There have been no formal studies of the cost-effectiveness of surgery for hydrocephalus in developed countries; however, one study in sub-Saharan Africa found neurosurgical intervention to be highly cost-effective, costing approximately $100 per disability-adjusted life year averted. Warf, BC, Alkire, BC, Bhai, S, Hughes, C, Schiff, SJ, Vincent, JR, et al. Costs and benefits of neurosurgical intervention for infant hydrocephalus in sub-Saharan Africa. Journal of Neurosurgery Pediatrics 2011;8(5):509–21. (Note that this analysis looked at all cases of congenital hydrocephalus—i.e., not just SCH).

47. Based on costs of shunt insertion, revision, or infection from Pham et al. 2013 (see note 46) and rates of revision, infection, or mortality from Vinchon et al. 2012 (see note 13). Approximate cost per patient (USD): 11,000 + (2.7 × 8,000) + (0.38 × 66,000) = 57,680. Life years saved: 18 × (0.48 − 0.14) = 6.12. Cost per life year saved: 57,680 ÷ 6.12 = 9,424.84.

48. On conventional healthy utility scales, a life in full health is given a utility of 1, whereas death is given a utility of 0. States judged to be not worth living are rated negatively. A value of 0.1 has been applied to some very severely disabled states. One way of interpreting this is that someone would be prepared to exchange 10 years of life in such a state for 1 year in full health. Patrick DL, Starks HE, Cain KC, Uhlmann RF, Pearlman RA. Measuring preferences for health states worse than death. Medical Decision Making 1994;14(1):9–18. There are substantial challenges in assessing the quality of life of individuals who are unable to communicate, and in determining whether life with severe disability is an outcome that the individual would consider sufficiently beneficial to outweigh the harms of treatment. For the purposes of this article I am not endorsing a particular value for the quality of life of children with hydrocephalus (nor necessarily endorsing the QALY approach). The point here is to note that even if a very low (but positive) value is placed on survival, treatment may still be judged sufficiently cost-effective to justify providing it.

49. This value is close to (but lower than) the $100,000-per-QALY threshold that has sometimes been implicitly or explicitly endorsed. Owens, DK. Interpretation of cost-effectiveness analyses. Journal of General Internal Medicine 1998;13(10):716–17. Note that the Patient Protection and Affordable Care Act in the United States prohibited the use of cost-effectiveness thresholds in federal funding decisions. Neumann, PJ, Weinstein, MC. Legislating against use of cost-effectiveness information. New England Journal of Medicine 2010;363(16):1495–7. Here I am not endorsing the use of cost-per-QALY thresholds for neonatal treatment decisions. Rather, I am using them to indicate that if cost-effectiveness is assessed in the way that it is for other treatments in some parts of the world, surgery for SCH might be judged cost-effective.

50. Muraskas, J, Parsi, K. The cost of saving the tiniest lives: NICUs versus prevention. Virtual Mentor 2008;10(10):655–8.

51. This evidence might be taken to support arguments in favor of limiting intensive care (or may highlight the importance of providing adequate analgesia). Alternatively, the absence of evidence of pain perception might neutralize or at least reduce concerns about harm to the child from continued treatment.

52. Interpretation of functional imaging or tractography would be potentially extremely difficult in the context of the highly distorted cerebral architecture present in children with SCH. Of more practical concern is the fact that the very small numbers of surviving children would make it difficult to obtain sufficient data.

The author was supported in this work by a grant from the Wellcome trust, (086041/Z/08/Z). The funders had no role in the design or conduct of this study; the collection, management, or analysis of data; or the preparation, review, or approval of this manuscript. An earlier version of this article was presented at the International Society for Hydrocephalus conference in Bristol, September 2014.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Cambridge Quarterly of Healthcare Ethics
  • ISSN: 0963-1801
  • EISSN: 1469-2147
  • URL: /core/journals/cambridge-quarterly-of-healthcare-ethics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 36
Total number of PDF views: 206 *
Loading metrics...

Abstract views

Total abstract views: 397 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th March 2018. This data will be updated every 24 hours.