Skip to main content Accessibility help
Hostname: page-component-684899dbb8-5dd2w Total loading time: 0.651 Render date: 2022-05-23T12:34:40.582Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

An individual-based phenology model for western spruce budworm (Lepidoptera: Tortricidae)

Published online by Cambridge University Press:  12 November 2013

V.G. Nealis*
Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, British Columbia, Canada
J. Régnière
Natural Resources Canada, Canadian Forest Service, Centre de foresterie des Laurentides, Sainte-Foy, Québec, Canada
1Corresponding author (e-mail:


An individual-based phenology model for western spruce budworm, Choristoneura occidentalis Freeman (Lepidoptera: Tortricidae), was developed using stage-specific rates of development, oviposition, and egg hatch observed under controlled conditions at several temperatures. Model output was compared with age distributions estimated by sampling field populations of budworm at several locations in British Columbia, Canada, over many years. The fit of the model was very good for the entire life cycle of the insect. We further validate the model by comparing output with independent observations of moth flight phenology of C. occidentalis and Choristoneura fumiferana (Clemens) in populations of Cypress Hills, Canada and illustrate spatial variation in the seasonal occurrence of early-stage feeding western spruce budworm over most of its range in western Canada. In addition to serving as the underlying structure for the modelling of population dynamics at the seasonal level, the model can be used to predict the time of occurrence of different life stages for precise timing of pest management operations.


Un modèle de phénologie basé sur les individus a été développé pour la tordeuse occidentale, Choristoneura occidentalis Freeman (Lepidoptera: Tortricidae), en utilisant les taux de développement spécifiques à chaque stade, ainsi que les taux d'oviposition et d’éclosion des œufs observés en conditions contrôlées à plusieurs températures. Les extrants du modèle ont été comparés à la distribution d’âges estimée par échantillonnage de populations naturelles à plusieurs endroits en Colombie-Britannique, Canada, pendant plusieurs années. L'ajustement du modèle est très bon pour tout le cycle vital de l'insecte. Nous validons le modèle plus à fond en comparant ses extrants à des observations indépendantes de la phénologie du vol des papillons de C. occidentalis et C. fumiferana dans des populations de Cypress Hills, Canada. Nous illustrons également la variation spatiale dans les dates d'apparition des jeunes stades larvaires de la tordeuse occidentale sur une grande portion de son aire de distribution dans l'ouest du Canada. En plus de constituer une excellente structure de base pour la modélisation de la dynamique saisonnière des populations de l'insecte, ce modèle peut être utilisé pour mieux synchroniser les opérations de lutte intégrée avec l'apparition des stades appropriés.

Behaviour & Ecology
Copyright © Her Majesty the Queen in Right of Canada 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Subject editor: Rob Johns


Allen, J.C. 1976. A modified sine wave method for calculating degree days. Environmental Entomology, 5: 388396.CrossRefGoogle Scholar
Bentz, B.J., Régnière, J., Fettig, C.J., Hansen, E.M., Hayes, J.L., Hicke, J.A., et al. 2010. Climate change and bark beetles of the western United States and Canada: direct and indirect effects. BioScience, 60: 602613.CrossRefGoogle Scholar
Both, C., van Asch, M., Bijlsma, R.G., van den Burg, A.B., Visser, M.E. 2009. Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? Journal of Animal Ecology, 78: 7383.CrossRefGoogle ScholarPubMed
Chuine, I. 2010. Why does phenology drive species distribution? Philosophical Transactions of the Royal Society B, 365: 31493160.CrossRefGoogle ScholarPubMed
Cooke, B.J.Régnière, J. 1996. An object-oriented, process-based stochastic simulation model of Bacillus thuringiensis efficacy against spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). International Journal of Pest Management, 42: 291306.CrossRefGoogle Scholar
Furniss, R.L.Carolin, V.M. 1977. Western forest insects. Miscellaneous Publication No. 1339. United States Department of Agriculture, Forest Service, Washington, DC, United States of America.Google Scholar
Gilbert, N.Raworth, D.A. 1996. Insects and temperature – a general theory. The Canadian Entomologist, 128: 113.CrossRefGoogle Scholar
Gray, D.R., Ravlin, F.W., Braine, J.A. 2001. Diapause in the gypsy moth: a model of inhibition and development. Journal of Insect Physiology, 47: 173184.CrossRefGoogle ScholarPubMed
Grimm, V.Railsback, S.F. 2005. Individual-based modeling and ecology. Princeton University Press, Princeton, New Jersey, United States of America.CrossRefGoogle Scholar
Kemp, W.P., Dennis, B., Beckwith, R.C. 1986. Stochastic phenology model for the western spruce budworm (Lepidoptera: Tortricidae). Environmental Entomology, 15: 547554.CrossRefGoogle Scholar
Kemp, W.P., Everson, D.O., Wellington, W.G. 1985. Regional climatic patterns and western spruce budworm outbreaks. Technical Bulletin No. 1693. United States Department of Agriculture Forest Service, Washington, DC, United States of America.Google Scholar
Korzukhin, M.D., Ter-Mikaelian, M.T., Wagner, R.G. 1996. Process versus empirical models: which approach for forest pest management? Canadian Journal of Forest Research, 26: 879887.CrossRefGoogle Scholar
Lumley, L.M.Sperling, F.A.H. 2011. Life-history traits maintain the genomic integrity of sympatric species of the spruce budworm (Choristoneura fumiferana) group on an isolated forest island. Ecology and Evolution, 1: 119131.CrossRefGoogle ScholarPubMed
Lysyk, T.J.Nealis, V.G. 1988. Temperature requirements for development of the jack pine budworm (Lepidoptera: Tortricidae) and two if its parasitoids (Hymenoptera). Journal of Economic Entomology, 81: 10451051.CrossRefGoogle Scholar
McMorran, A. 1965. A synthetic diet for the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). The Canadian Entomologist, 97: 5862.CrossRefGoogle Scholar
Murdock, T.Q., Taylor, S.W., Flower, A., Mehlenbacher, A., Montenegro, A., Zwiers, F.W., et al. 2013. Pest outbreak distribution and forest management impacts in a changing climate in British Columbia. Environmental Science and Policy, 26: 7589.CrossRefGoogle Scholar
Nealis, V.G.Nault, J.R. 2005. Seasonal changes in foliar terpenes indicate suitability of Douglas-fir buds for western spruce budworm. Journal of Chemical Ecology, 31: 683696.CrossRefGoogle ScholarPubMed
Nealis, V.G., Noseworthy, M., Turnquist, R., Waring, V.R. 2009. Balancing risks of disturbance from mountain pine beetle and western spruce budworm. Canadian Journal of Forest Research, 39: 839848.CrossRefGoogle Scholar
Nealis, V.G.Régnière, J. 2009. Risk of dispersal in western spruce budworm. Agricultural and Forest Entomology, 11: 213223.CrossRefGoogle Scholar
Nealis, V.G., Régnière, J., Gray, D. 2001. Modeling seasonal development of the gypsy moth in a novel environment for decision support of an eradication program. In Proceedings integrated management and dynamics of forest defoliating insects, Victoria, British Columbia, August 15–19, 1999. Edited by A.M. Liebhold, M.L. McManus, I.S. Otvos, and S.L.C. Forbrooke. GTR NE-277. United States Department of Agriculture Forest Service, Newtown Square, Pennsylvania, United States of America. Pp. 125132.Google Scholar
Powell, J.A.Logan, J.A. 2005. Insect seasonality: circle map analysis of temperature-driven life cycles. Theoretical Population Ecology, 67: 161179.CrossRefGoogle ScholarPubMed
Régnière, J. 1982. A process-oriented model of spruce budworm phenology (Lepidoptera: Tortricidae). The Canadian Entomologist, 114: 811825.CrossRefGoogle Scholar
Régnière, J. 1987. Temperature-dependent development of eggs and larvae of Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae) and simulation of its life history. The Canadian Entomologist, 119: 717728.CrossRefGoogle Scholar
Régnière, J. 1990. Diapause termination and changes in thermal responses during postdiapause development in larvae of the spruce budworm, Choristoneura fumiferana. Journal of Insect Physiology, 36: 727735.CrossRefGoogle Scholar
Régnière, J. 1996. Generalized approach to landscape-wide seasonal forecasting with temperature-driven simulation models. Environmental Entomology, 25: 869881.CrossRefGoogle Scholar
Régnière, J.Logan, J.A. 2003. Animal life cycle models. In Phenology: an integrative environmental science. Edited by M.D. Shwartz. Kluwer Academic Publishers, Dordrecht, The Netherlands. Pp. 237254.CrossRefGoogle Scholar
Régnière, J., Nealis, V., Porter, K. 2009. Climate suitability and management of the gypsy moth invasion into Canada. Biological Invasions, 11: 135148.CrossRefGoogle Scholar
Régnière, J., Powell, J., Bentz, B., Nealis, V. 2012a. Effects of temperature on development, survival and reproduction of insects: experimental design, data analysis and modeling. Journal of Insect Physiology, 58: 634647.CrossRefGoogle ScholarPubMed
Régnière, J., St-Amant, R., Béchard, A. 2013. BioSIM 10–User's manual. Information Report LAU-X-137E. Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Sainte-Foy, Québec, Canada.Google Scholar
Régnière, J., St-Amant, R., Duval, P. 2012b. Predicting insect distributions under climate change from physiological responses: spruce budworm as an example. Biological Invasions, 14: 15711586.CrossRefGoogle Scholar
Régnière, J.You, M. 1990. A simulation model of spruce budworm (Lepidoptera: Tortricidae) feeding on balsam fir and white spruce. Ecological Modelling, 54: 277297.CrossRefGoogle Scholar
Schoolfield, R.M., Sharpe, P.J.H., Magnusun, C.E. 1981. Nonlinear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. Journal of Theoretical Biology, 88: 719731.CrossRefGoogle Scholar
Sharpe, P.J.H.DeMichele, D.W. 1977. Reaction kinetics of poikilotherm development. Journal of Theoretical Biology, 64: 649670.CrossRefGoogle ScholarPubMed
Swetnam, T.W.Lynch, A.M. 1993. Multicentury, regional-scale patterns of western spruce budworm outbreaks. Ecological Monographs, 63: 399424.CrossRefGoogle Scholar
Thomson, A.J.Benton, R. 2007. A 90-year sea warming trend explains outbreak patterns of western spruce budworm on Vancouver Island. Forestry Chronicle, 83: 867869.CrossRefGoogle Scholar
Thomson, A.J., Harris, J.W.E., Silversides, R.H., Shepherd, R.F. 1983. Effects of elevation on rate of development of western spruce budworm (Lepidoptera: Tortricidae) in British Columbia. The Canadian Entomologist, 115: 11811187.CrossRefGoogle Scholar
Thomson, A.J., Shepherd, R.F., Harris, J.W.E., Silversides, R.H. 1984. Relating weather to outbreaks of western spruce budworm, Choristoneura occidentalis (Lepidoptera: Tortricidae), in British Columbia. The Canadian Entomologist, 116: 375381.CrossRefGoogle Scholar
Volney, W.J.A.Fleming, R.A. 2007. Spruce budworm (Choristoneura spp.) biotype reactions to forest and climate characteristics. Global Change Biology, 13: 16301643.CrossRefGoogle Scholar
Volney, W.J.A.Liebhold, A.M. 1985. Post-diapause development of sympatric Choristoneura occidentalis and C. retiniana (Lepidoptera: Tortricidae) and their hybrids. The Canadian Entomologist, 117: 14791488.CrossRefGoogle Scholar
Volney, W.J.A., Waters, W.E., Akers, P., Liebhold, A.M. 1983. Variation in spring emergence patterns among western Choristoneura spp. (Lepidoptera: Tortricidae) populations in southern Oregon. The Canadian Entomologist, 115: 199209.CrossRefGoogle Scholar
Williams, D.W.Liebhold, A.M. 1995. Forest defoliators and climatic change: potential changes in spatial distribution of outbreaks of western spruce budworm (Lepidoptera: Tortricidae) and gypsy moth (Lepidoptera: Lymantriidae). Environmental Entomology, 24: 19.CrossRefGoogle Scholar
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

An individual-based phenology model for western spruce budworm (Lepidoptera: Tortricidae)
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

An individual-based phenology model for western spruce budworm (Lepidoptera: Tortricidae)
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

An individual-based phenology model for western spruce budworm (Lepidoptera: Tortricidae)
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *