Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-17T12:35:27.005Z Has data issue: false hasContentIssue false

Distribution patterns of Macrodasyceras hirsutum (Hymenoptera: Torymidae) eggs among Ilex integra (Aquifoliaceae) seeds and berries

Published online by Cambridge University Press:  10 September 2013

Etsuro Takagi*
Laboratory of Forest Zoology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
Katsumi Togashi
Laboratory of Forest Zoology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
1Corresponding author (e-mail:


Preference-performance hypothesis in host selection by herbivorous insects predicts selective oviposition on plant on which the offspring maximise fitness. The seed parasitoid wasp, Macrodasyceras hirsutum Kamijo (Hymenoptera: Torymidae) selectively lays the eggs into the fertilised seeds of Ilex integra Thunberg (Aquifoliaceae). Only one larva develops in a seed. Therefore, the hypothesis predicts a uniform distribution pattern of wasp eggs among fertilised seeds. Dissection of 531 berries showed that M. hirsutum deposited one to five eggs into a fertilised seed. Iwao's patchiness regression suggested a uniform distribution pattern of M. hirsutum eggs among fertilised seeds at the scales of tree and berry and their random distribution pattern among berries at the tree scale. Destroying the connection of seeds within berries revealed that female wasps randomly selected berries for oviposition in most trees. Generalised linear mixed models showed that the number of fertilised seeds in a berry could not explain the number of eggs in a seed but could explain the number of eggs in a berry. Therefore, this study shows that the wasp females do not distinguish between berries with different numbers of fertilised seeds but distinguish between seeds harbouring different numbers of eggs, which supports the hypothesis.


L'hypothèse de préférence/performance dans la sélection d'hôtes par les insectes herbivores prédit que la ponte se fera de façon préférentielle sur les plantes sur lesquelles les rejetons pourront maximiser leur valeur adaptative (fitness). La guêpe parasitoïde des graines, Macrodasyceras hirsutum Kamijo (Hymenoptera: Torymidae), pond ses œufs de façon sélective dans les graines fécondées d’Ilex integra Thunberg (Aquifoliaceae). Une seule larve peut se développer dans chaque graine. C'est pourquoi, l'hypothèse prédit un patron de distribution uniforme des œufs de guêpes parmi les graines fécondées. La dissection de 531 fruits révèle que M. hirsutum dépose 1–5 œufs par graine fécondée. Une régression de contagion d'Iwao laisse croire qu'il existe un patron de distribution uniforme des œufs de M. hirsutum au sein des graines fécondées à l’échelle des arbres et des fruits, mais un patron de distribution aléatoire parmi les fruits à l’échelle de l'arbre. Si on élimine la connexion entre les graines au sein des fruits, il apparaît que les guêpes femelles sélectionnent les fruits au hasard pour la ponte sur la plupart des arbres. Des modèles généralisés linéaires mixtes montrent que le nombre de graines fécondées dans un fruit ne peut expliquer le nombre d’œufs par graine, mais pourrait expliquer le nombre d’œufs par fruit. Ainsi, notre étude montre que les guêpes femelles ne peuvent distinguer entre les fruits contenant différentes quantités de graines fécondées, mais peuvent distinguer entre les graines qui contiennent différentes quantités d’œufs, ce qui appuie l'hypothèse.

Behaviour & Ecology
Copyright © Entomological Society of Canada 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Subject editor: Keith Summerville


Burnham, K.P.Anderson, D.R. 2002. Model selection and multimodel inference: a practical information-theoretic approach, 2nd edition. Springer, New York, United States of America.Google Scholar
Desouhant, E. 1998. Selection of fruits for oviposition by the chestnut weevil, Curculio elephas. Entomologia Experimentalis et Applicata, 86: 7178.CrossRefGoogle Scholar
Gripenberg, S., Mayhew, P.J., Parnell, M., Roslin, T. 2010. A meta-analysis of preference-performance relationships in phytophagous insects. Ecology Letters, 13: 383393.CrossRefGoogle ScholarPubMed
Itô, Y. 1967. Population dynamics of the chestnut gall-wasp, Dryocosmus kuriphilus (Hymenoptera: Cynipidae) IV. Further analysis of the distribution of eggs and young larvae in buds using the truncated negative binomial series. Researches on Population Ecology, 9: 177191.CrossRefGoogle Scholar
Iwao, S. 1968. A new regression method for analysing the aggregation patterns of animal populations. Researches on Population Ecology, 10: 120.CrossRefGoogle Scholar
Johnson, J.B.Omland, K.S. 2004. Model selection in ecology and evolution. Trends in Ecology and Evolution, 19: 101108.CrossRefGoogle ScholarPubMed
Kamijo, K. 1981. Description of the male and other notes on Macrodasyceras hirsutum (Hymenoptera: Torymidae). Akitu (new series), 38: 14.Google Scholar
Kamm, J.A.Buttery, R.G. 1986. Oviposition behavior of the alfalfa seed chalcid (Hymenoptera: Eurytomidae) in response to volatile components of alfalfa. Environmental Entomology, 15: 388391.CrossRefGoogle Scholar
Katsuta, M., Mori, T., Yokoyama, T. 1998. Seeds of woody plants in Japan Angiospermae [in Japanese]. Japan Forest Tree Breeding Association, Tokyo, Japan.Google Scholar
Kouloussis, N.A.Katsoyannos, B.I. 1993. Egg distribution patterns in the almond seed wasp, Eurytoma amygdali. Entomologia Experimentalis et Applicata, 66: 3138.CrossRefGoogle Scholar
Lloyd, M. 1967. Mean crowding. Journal of Animal Ecology, 36: 130.CrossRefGoogle Scholar
Messina, F.J., Renwick, A.A. 1985. Ability of ovipositing seed beetles to discriminate between seeds with differing egg loads. Ecological Entomology, 10: 225230.CrossRefGoogle Scholar
Muggeo, V.M.R. 2003. Estimating regression models with unknown break-points. Statistics in Medicine, 22: 30553071.CrossRefGoogle ScholarPubMed
Prokopy, R.J. 1972. Evidence for a marking pheromone deterring repeated oviposition in apple maggot flies. Environmental Entomology, 1: 326332.CrossRefGoogle Scholar
Sallabanks, R.Courtney, S.P. 1992. Frugivory, seed predation, and insect-vertebrate interactions. Annual Review of Entomology, 37: 377400.CrossRefGoogle ScholarPubMed
Stamps, W.T.Linit, M.J. 2002. Oviposition choice by the black walnut curculio (Coleoptera: Curculionidae): a ten-year study. Environmental Entomology, 31: 281284.CrossRefGoogle Scholar
Takagi, E., Iguchi, K., Suzuki, M., Togashi, K. 2010. Selective oviposition in fertilized seed of Ilex integra by the wasp Macrodasyceras hirsutum (Hymenoptera: Torymidae). European Journal of Entomology, 107: 197202.CrossRefGoogle Scholar
Takagi, E., Iguchi, K., Suzuki, M., Togashi, K. 2012. A seed parasitoid wasp prevents berries from changing their colour, reducing their attractiveness to frugivorous birds. Ecological Entomology, 37: 99107.CrossRefGoogle Scholar
Takagi, E.Togashi, K. 2012. Evidence of sex change in Ilex integra. Botany, 90: 7578.CrossRefGoogle Scholar
Thompson, J.N. 1988. Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomologia Experimentalis et Applicata, 47: 314.CrossRefGoogle Scholar
Wennström, W., Hjulström, L.N., Hjältén, J., Julkunen-Tiitto, R. 2010. Mother really knows best: host choice of adult phytophagous insect females reflects a within-host variation in suitability as larval food. Chemoecology, 20: 3542.CrossRefGoogle Scholar
Supplementary material: File

Takagi Supplementary Material


Download Takagi Supplementary Material(File)
File 72.7 KB
Supplementary material: File

Takagi Supplementary Material

Supplementary Material

Download Takagi Supplementary Material(File)
File 87.6 KB