Hostname: page-component-5d59c44645-mrcq8 Total loading time: 0 Render date: 2024-02-29T08:39:22.928Z Has data issue: false hasContentIssue false

Seasonal dynamics of three coexisting aphid species: implications for estimating population variability

Published online by Cambridge University Press:  23 April 2013

Robert J. Lamb*
Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
Patricia A. MacKay
Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
Andrei Alyokhin
School of Biology and Ecology, University of Maine, 5722 Deering Hall, Orono, Maine 04469, United States of America
1Corresponding author (e-mail:


Seasonal patterns of abundance and population variability were determined for Macrosiphum euphorbiae (Thomas), Myzus persicae (Sulzer), and Aphis nasturtii (Kaltenbach) (Hemiptera: Aphididae) in potato plots from weekly samples for 28 years. All species showed a single annual peak, but arrived and reached peak abundance at different times. Population variability (PV, a proportion between 0 and 1) for the week of peak abundance was close to that of other sample weeks and mean seasonal abundance. Based on mid-season abundance, PV of 0.76 for M. persicae differed significantly from 0.80 for A. nasturtii, as well as from 0.59 for M. euphorbiae. A weekly time scale for abundance, initiated at an early stage of plant growth, produced slightly different estimates of PV early and late in the season than a scale centred on peak abundance for each species. PV at the time of invasion differed from estimates for the rest of the summer. The annual abundance used to estimate PV was best determined in the context of aphid life history. Nevertheless, PV provided a robust and precise metric for comparing population variability among the three species, regardless of their seasonal patterns of abundance.


Des échantillons hebdomadaires sur 28 années ont servi à déterminer les patrons saisonniers d'abondance et de variabilité des populations de Macrosiphum euphorbiae (Thomas), Myzus persicae (Sulzer) et Aphis nasturtii (Kaltenbach) (Hemiptera: Aphididae) dans des parcelles de culture de pommes de terre. Toutes les espèces affichent un seul pic annuel d'abondance, mais arrivent au pic et l'atteignent à des moments différents. La variabilité de la population (PV, une proportion entre 0 et 1) pour la semaine du pic d'abondance est proche de celle des autres semaines d’échantillonnage et de l'abondance saisonnière moyenne. D'après les abondances de mi-saison, la valeur PV de 0,76 chez M. persicae diffère significativement de 0,80 chez A. nasturtii ainsi que de 0,59 chez M. euphorbiae. Une échelle temporelle hebdomadaire de l'abondance commençant au moment du début de la croissance des plantes donne des estimations de PV tôt et tard dans la saison légèrement différentes de celles d'une échelle centrée sur les pics d'abondance de chacune des espèces. La valeur de PV au moment de l'invasion diffère des estimations obtenues sur le reste de l’été. L'abondance annuelle utilisée pour estimer la variabilité de la population est idéalement déterminée dans le contexte du cycle de vie des pucerons. Néanmoins, PV fournit une métrique robuste et précise pour comparer la variabilité entre les trois espèces, quel que soit leur patron saisonnier d'abondance.

Behaviour & Ecology
Copyright © Entomological Society of Canada 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Alyokhin, A., Drummond, F.A., Sewell, G. 2005. Density-dependent regulation in populations of potato-colonizing aphids. Population Ecology, 47: 257266.CrossRefGoogle Scholar
Alyokhin, A., Drummond, F.A., Sewell, G., Storch, R.H. 2011. Differential effects of weather and natural enemies on coexisting aphid populations. Environmental Entomology, 40: 570580.CrossRefGoogle ScholarPubMed
Cappuccino, N. 1987. Comparative population dynamics of two goldenrod aphids: spatial patterns and temporal constancy. Ecology, 68: 16341646.CrossRefGoogle ScholarPubMed
Connell, J.H.Sousa, W.P. 1983. On the evidence needed to judge ecological stability or persistence. The American Naturalist, 121: 789824.CrossRefGoogle Scholar
Corbineau, A., Rouyer, T., Cazelles, B., Fromentin, J.-M., Fonteneau, A., Ménard, F. 2008. Time series analysis of tuna and swordfish catches and climate variability in the Indian Ocean (1968–2003). Aquatic Living Resources, 21: 277285.CrossRefGoogle Scholar
Costamagna, A.C., van der Werf, W., Bianchi, F.J.J.A., Landis, D.A. 2007. An exponential growth model with decreasing r captures bottom-up effects on the population growth of Aphis glycines Matsumura (Hemiptera: Aphididae). Agricultural and Forest Entomology, 9: 297305.CrossRefGoogle Scholar
Dalin, P., Kindvall, O., Björkman, C. 2009. Reduced population control of an insect pest in managed willow monocultures. PLoS One, 4: e5847. doi:10.1371/journal.pone.0005487.CrossRefGoogle ScholarPubMed
Dochtermann, N.A.Peacock, M.M. 2013. Inter- and intra-specific patterns of density dependence and population size variability in Salmoniformes. Oecologia, 171: 153162.Google Scholar
Grimm, V.Wissel, C. 1997. Babel, or the ecological stability discussions: an inventory and analysis of terminology and a guide for avoiding confusion. Oecologia, 109: 323334.CrossRefGoogle Scholar
Heath, J.P. 2006. Quantifying temporal variability in population abundances. Oikos, 115: 573581.CrossRefGoogle Scholar
Honek, A.Martinkova, Z. 2004. Host plant age and population development of a cereal aphid, Metopolophium dirhodum (Hemiptera: Aphididae). Bulletin of Entomological Research, 94: 1926.CrossRefGoogle ScholarPubMed
Inchausti, P.Halley, J. 2003. On the relation between temporal variability and persistence time in animal populations. Journal of Animal Ecology, 72: 899908.CrossRefGoogle Scholar
Jovani, R., Schielzeth, H., Mavor, R., Oro, D. 2012. Specificity of grouping behaviour: comparing colony sizes for the same seabird species in distant populations. Journal of Avian Biology, 43: 16.CrossRefGoogle Scholar
Lamb, R.J.MacKay, P.A. 2010. Stability of natural populations of an aphid, Uroleucon rudbeckiae, at three spatial scales. The Canadian Entomologist, 142: 3651.CrossRefGoogle Scholar
Lamb, R.J., MacKay, P.A., Alyokhin, A. 2011. Population variability and persistence of three aphid pests of potatoes over 60 years. The Canadian Entomologist, 143: 91101.CrossRefGoogle Scholar
Lamb, R.J., MacKay, P.A., Wool, D. 2012. Population stability of a tree-galling aphid, Baizongia pistaciae, at three spatial scales. The Canadian Entomologist, 144: 406418.CrossRefGoogle Scholar
Lamb, R.J., Wise, I.L., MacKay, P.A. 1997. Photoperiodism and seasonal abundance of an aphid, Macrosiphum euphorbiae (Thomas), in oilseed flax. The Canadian Entomologist, 129: 10491058.CrossRefGoogle Scholar
Maiteki, G.A., Lamb, R.J., Ali-Khan, S.T. 1986. Seasonal abundance of the pea aphid, Acyrthosiphon pisum (Homoptera: Aphididae), in Manitoba field peas. The Canadian Entomologist, 118: 601607.CrossRefGoogle Scholar
Matis, J.H., Kiffe, T.R., van der Werf, W., Costamagna, A.C., Matis, T.I., Grant, W.E. 2009. Population dynamics models based on cumulative density dependent feedback: a link to the logistic growth curve and a test for symmetry using aphid data. Ecological Modelling, 220: 17451751.CrossRefGoogle Scholar
McArdle, B.H., Gaston, K.J., Lawton, J.H. 1990. Variation in the size of animal populations: patterns, problems and artefacts. Journal of Animal Ecology, 59: 439454.CrossRefGoogle Scholar
Pimm, S.L.Redfearn, A. 1988. The variability of population densities. Nature, 334: 613614.CrossRefGoogle Scholar
Shands, W.A., Simpson, G.W., Reed, L.B. 1954. Subunits of sample for estimating aphid abundance on potatoes. Journal of Economic Entomology, 47: 10241027.CrossRefGoogle Scholar
SYSTAT Software Inc. 2009. SYSYAT 13, Statistics I. SYSTAT Software Inc., Chicago, United States of America.Google Scholar
Taylor, L.R.Woiwod, I.P. 1980. Temporal stability as a density-dependent species characteristic. Journal of Animal Ecology, 49: 209224.CrossRefGoogle Scholar
Way, M.J. 1967. The nature and causes of annual fluctuations in numbers of Aphis fabae Scop. on field beans. Annals of Applied Biology, 59: 175188.CrossRefGoogle Scholar
Wellings, P.W., Chambers, R.J., Dixon, A.F.G., Aikman, D.P. 1985. Sycamore aphid numbers and population density. I. Some patterns. Journal of Animal Ecology, 54: 411424.CrossRefGoogle Scholar