Skip to main content Accessibility help
×
Home
Hostname: page-component-7f7b94f6bd-mcrbk Total loading time: 0.175 Render date: 2022-06-29T23:33:56.895Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Uniform Convergence of Trigonometric Series with General Monotone Coefficients

Published online by Cambridge University Press:  09 January 2019

Mikhail Dyachenko
Affiliation:
Department of Mechanics and Mathematics, Lomonosov Moscow State University, MSU, GSP-1, Moscow, 119991, Russia Email: dyach@mail.ru
Askhat Mukanov
Affiliation:
Centre de Recerca Matemàtica and Universitat Autónoma de Barcelona, Departament de Matematiques, Edifici C Facultat de Ciències, 08193 Bellaterra (Barcelona), Spain Kazakhstan Branch of Lomonosov Moscow State University, Kazhymukan St., 11, Astana, 010010, Kazakhstan Email: mukanov.askhat@gmail.com
Sergey Tikhonov
Affiliation:
Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C 08193 Bellaterra (Barcelona), Spain ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain, and Universitat Autónoma de Barcelona Email: stikhonov@crm.cat

Abstract

We study criteria for the uniform convergence of trigonometric series with general monotone coefficients. We also obtain necessary and sufficient conditions for a given rate of convergence of partial Fourier sums of such series.

Type
Article
Copyright
© Canadian Mathematical Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research was partially supported by RFFI no. 16-01-00350, MTM 2014-59174-P, 2014 SGR 289, the grants of Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan (projects AP05131707, AP05133301), and by the CERCA Programme of the Generalitat de Catalunya.

References

Bernstein, S., Sur l’ordre de la meilleure approximation des fonctions continues par des polynômes de degré donné . Mémoires de l’Académie Royale de Belgique (2) 4(1912), 1104.Google Scholar
Boas , R. P. Jr., Integrability theorems for trigonometric transforms. Ergebnisse der Mathematik und ihrer Grenzgebiete, 38, Springer-Verlag, New York, 1967.CrossRefGoogle Scholar
Chaundy, T. W. and Jolliffe, A. E., The uniform convergence of a certain class of trigonometrical series . Proc. London Math. Soc. (2) 15(1916), 214216.Google Scholar
Dyachenko, M. and Tikhonov, S., Integrability and continuity of functions represented by trigonometric series: coefficients criteria . Studia Math. 193(2009), 285306. https://doi.org/10.4064/sm193-3-5.CrossRefGoogle Scholar
Dyachenko, M. and Tikhonov, S., General monotone sequences and convergence of trigonometric series. In: Topics in classical analysis and applications in honor of Daniel Waterman, World Sci., Hackensack, NJ, 2008, pp. 88–101.CrossRefGoogle Scholar
Dyachenko, M. and Tikhonov, S., Smoothness properties of functions with general monotone Fouier coefficients . J. Fourier Anal. Appl.(2017). https://doi.org/10.1007/s00041-017-9553-7.Google Scholar
Fekete, M., Proof of three propositions of Paley . Bull. Amer. Math. Soc. 41(1935), 138144. https://doi.org/10.1090/S0002-9904-1935-06036-7.CrossRefGoogle Scholar
Feng, L., Totik, V., and Zhou, S. P., Trigonometric series with a generalized monotonicity condition . Acta Math. Sin. (Engl. Ser.) 30(2014), 8, 12891296. https://doi.org/10.1007/s10114-014-3496-6.CrossRefGoogle Scholar
Flett, T. M., On the degree of approximation to a function by the Cesaro means of its Fourier series . Quart. J. Math. Oxford Ser. (2) 7(1956), 8195. https://doi.org/10.1093/qmath/7.1.81.CrossRefGoogle Scholar
Iosevich, A. and Liflyand, E., Decay of the Fourier transform. In: Analytic and geometric aspects. Birkhäuser/Springer, Basel, 2015.CrossRefGoogle Scholar
Lebesgue, H., Sur la représentation trigonométrique approchée des fonctions satisfaisant á une condition de Lipschitz . Bull. Soc. Math. France 38(1910), 184210. https://doi.org/10.24033/bsmf.859.CrossRefGoogle Scholar
Leindler, L., On the uniform convergence and boundedness of a certain class of sine series . Anal. Math. 27(2001), 279285. https://doi.org/10.1023/A:1014320328217.CrossRefGoogle Scholar
Liflyand, E. and Tikhonov, S., A concept of general monotonicity and applications . Math. Nachr. 284(2011), 10831098. https://doi.org/10.1002/mana.200810262.CrossRefGoogle Scholar
Rudin, W., Some theorems on Fourier coefficients . Proc. Amer. Math. Soc. 10(1959), 855859. https://doi.org/10.1090/S0002-9939-1959-0116184-5.CrossRefGoogle Scholar
Salem, R. and Zygmund, A., The approximation by partial sums of Fourier series . Trans. Amer. Math. Soc. 59(1946), 1422. https://doi.org/10.1090/S0002-9947-1946-0015538-0.CrossRefGoogle Scholar
Shapiro, H. S., Extremal problems for polynomials and power series. Thesis for S.M. Degree, Massachusetts Institute of Technology, 1951.Google Scholar
Tikhonov, S., Trigonometric series with general monotone coefficients . J. Math. Anal. Appl. 326(2007), 721735. https://doi.org/10.1016/j.jmaa.2006.02.053.CrossRefGoogle Scholar
Tikhonov, S., Best approximation and moduli smoothness: computation and equivalence theorems . J. Approx. Theory 153(2008), 1939. https://doi.org/10.1016/j.jat.2007.05.006.CrossRefGoogle Scholar
Zhou, S. P., Zhou, P., and Yu, D. S., Ultimate generalization to monotonicity for uniform convergence of trigonometric series . Sci. China Math. 53(2010), 18531862. https://doi.org/10.1007/s11425-010-3138-0.CrossRefGoogle Scholar
Zygmund, A., Trigonometric series. Vol. I, II. Third ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2002.Google Scholar
6
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Uniform Convergence of Trigonometric Series with General Monotone Coefficients
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Uniform Convergence of Trigonometric Series with General Monotone Coefficients
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Uniform Convergence of Trigonometric Series with General Monotone Coefficients
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *