Skip to main content Accessibility help

Holomorphic Generation of Continuous Inverse Algebras

  • Harald Biller (a1)

We study complex commutative Banach algebras (and, more generally, continuous inverse algebras) in which the holomorphic functions of a fixed n-tuple of elements are dense. In particular, we characterize the compact subsets of ℂ n which appear as joint spectra of such n-tuples. The characterization is compared with several established notions of holomorphic convexity by means of approximation conditions.

    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Holomorphic Generation of Continuous Inverse Algebras
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Holomorphic Generation of Continuous Inverse Algebras
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Holomorphic Generation of Continuous Inverse Algebras
      Available formats
Hide All
[1] Arens, R. and Calderón, A. P., Analytic functions of several Banach algebra elements. Ann. of Math. (2) 62(1955), 204216.
[2] Behnke, H. and Stein, K., Konvergente Folgen von Regularitätsbereichen und die Meromorphiekonvexität, Math. Ann. 116(1938), 204216.
[3] Biller, Harald, Algebras of complex analytic germs. Preprint 2331,
[4] Biller, Harald, Analyticity and naturality of the multi-variable functional calculus. To appear in Expositiones Mathematicae.
[5] Biller, Harald, Continuous inverse algebras and infinite-dimensional linear Lie groups, Habilitationsschrift, Technische Universität Darmstadt, 2004,∼biller.
[6] Biller, Harald, Continuous inverse algebras with involution, Preprint 2346,
[7] Björk, J.-E., Holomorphic convexity and analytic structures in Banach algebras. Ark. Mat. 9(1971), 3954.
[8] Blackadar, B., K-Theory for Operator Algebras. Second edition. Mathematical Sciences Research Institute Publications 5, Cambridge University Press, Cambridge, 1998.
[9] Bonsall, F. F. and Duncan, J., Complete Normed Algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete 80, Springer-Verlag, New York, 1973.
[10] Bost, J.-B., Principe d’Oka, K-théorie et systèmes dynamiques non commutatifs. Invent. Math. 101(1990), no. 2, 261333.
[11] Bourbaki, N., Éléments de mathématique. Fasc. XXXII. Théories spectrales. Chapitre I: Algèbres normées. Chapitre II: Groupes localement compacts commutatifs, Actualités Scientifiques et Industrielles, No. 1332, Hermann, Paris, 1967.
[12] Connes, A., Noncommutative differential geometry. Inst. Hautes Études Sci. Publ. Math. 62(1985), 257360.
[13] Dierolf, S. and Wengenroth, J., Inductive limits of topological algebras. Linear Topol. Spaces Complex Anal. 3(1997), 4549,
[14] Docquier, F. and Grauert, H., Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten. Math. Ann. 140(1960), 94123.
[15] Dugundji, J., Topology. Allyn and Bacon, Boston, MA, 1966.
[16] Engelking, R., General topology. Second edition, Sigma Series in Pure Mathematics 6, Heldermann Verlag, Berlin, 1989.
[17] Floret, K., Lokalkonvexe Sequenzen mit kompakten Abbildungen. J. Reine Angew.Math. 247(1971), 155195.
[18] Forstnerič, F., A smooth holomorphically convex disc in C2 that is not locally polynomially convex. Proc. Amer. Math. Soc. 116(1992), no. 2, 411415.
[19] Gamelin, T. W., Uniform algebras. Prentice-Hall, Englewood Cliffs, NJ, 1969.
[20] Glöckner, H., Algebras whose groups of units are Lie groups. Studia Math. 153(2002), no. 2, 147177.
[21] Gramsch, B., Relative Inversion in der Störungstheorie von Operatoren und. -Algebren. , Math. Ann. 269(1984), no. 1, 2771.
[22] Grauert, H. and Remmert, R., Theorie der Steinschen Räume. Grundlehren der Mathematischen Wissenschaften 227, Springer-Verlag, Berlin, 1977.
[23] Gunning, R. C. and Rossi, H., Analytic Functions of Several Complex Variables. Prentice-Hall, Englewood Cliffs, NJ, 1965.
[24] Harvey, R. and Wells, R. O. Jr., Compact holomorphically convex subsets of a Stein manifold. Trans. Amer. Math. Soc. 136(1969), 509516.
[25] Hewitt, E. and Stromberg, K., Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable. Graduate Texts in Mathematics 25, Springer-Verlag, New York, 1975.
[26] Hörmander, L., An Introduction to Complex Analysis in Several Variables. Second revised edition. North-Holland Publishing, Amsterdam, 1973.
[27] Hörmander, L. and Wermer, J., Uniform approximation on compact sets in Cn. Math. Scand. 23(1968), 521 (1968).
[28] Kriegl, A. and Michor, P. W., The Convenient Setting of Global Analysis. Mathematical Surveys and Monographs 53, American Mathematical Society, Providence, RI, 1997.
[29] Maier, P., Central extensions of topological current algebras. In: Geometry and Analysis on Finiteand Infinite-Dimensional Lie Groups, Banach Center Publ. 55, Polish Acad. Sci., Warsaw, 2002, pp. 6176.
[30] Maier, P. and Neeb, K.-H., Central extensions of current groups. Math. Ann. 326(2003), no. 2, 367415.
[31] Michael, E. A., Locally multiplicatively-convex topological algebras. Mem. Amer. Math. Soc., 1952(1952), no. 11.
[32] Neeb, K.-H., Current groups for non-compact manifolds and their central extensions. In: Infinite Dimensional Groups and Manifolds, IRMA Lect. Math. Theor. Phys. 5, de Gruyter, Berlin, 2004, pp. 109183.
[33] Neeb, K.-H., Locally convex root graded Lie algebras. Travaux mathématiques 14, (Univ. du Luxembourg), 2003 pp. 25120.
[34] Neeb, K.-H. and Wagemann, F., The universal central extension of the holomorphic current algebra. Manuscripta Math. 112(2003), no. 4, 441458.
[35] Phillips, N. C., K-theory for Fréchet algebras. Internat. J. Math. 2(1991), no. 1, 77129.
[36] Range, R. M., Holomorphic functions and integral representations in several complex variables. Graduate Texts in Mathematics 108, Springer-Verlag, New York, 1986.
[37] Rossi, Hugo, Holomorphically convex sets in several complex variables. Ann. of Math. (2) 74(1961), 470493.
[38] Rossi, Hugo, On envelopes of holomorphy. Comm. Pure Appl. Math. 16(1963), 917.
[39] Rudin, Walter, Functional Analysis. McGraw-Hill, New York, 1973.
[40] Rudin, Walter, Real and Complex Analysis. Third edition. McGraw-Hill, New York, 1987.
[41] Šilov, G. E., On the decomposition of a commutative normed ring into a direct sum of ideals. Amer. Math. Soc. Transl. (2) 1(1955), 3748.
[42] Siu, Y. T., Every Stein subvariety admits a Stein neighborhood. Invent. Math. 38(1976/77), no. 1, 89100.
[43] Taylor, Joseph L., Several Complex Variables with Connections to Algebraic Geometry and LIe Groups. Graduate Studies in Mathematics 46, American Mathematical Society, Providence, RI, 2002.
[44] Waelbroeck, Lucien, Le calcul symbolique dans les algèbres commutatives. J. Math. Pures Appl. (9) 33(1954), 147186.
[45] Waelbroeck, Lucien, Les algèbres à inverse continu. C. R. Acad. Sci. Paris 238(1954), 640641.
[46] Waelbroeck, Lucien, The holomorphic functional calculus and non-Banach algebras. In: Algebras in Analysis, Academic Press, London, 1975, pp. 187251.
[47] Waelbroeck, Lucien, The holomorphic functional calculus as an operational calculus. In: Spectral Theory, Banach Center Publ. 8, PWN, Warsaw, 1982, pp. 513552.
[48] Wells, R. O. Jr., Holomorphic hulls and holomorphic convexity of differentiable submanifolds. Trans. Amer. Math. Soc. 132(1968), 245262.
[49] Zame, William R., Holomorphic convexity of compact sets in analytic spaces and the structure of algebras of holomorphic germs. Trans. Amer. Math. Soc. 222(1976), 107127.
[50] Zame, William R., Existence, uniqueness and continuity of functional calculus homomorphisms. Proc. London Math. Soc. (3) 39(1979), no. 1, 7392.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Journal of Mathematics
  • ISSN: 0008-414X
  • EISSN: 1496-4279
  • URL: /core/journals/canadian-journal-of-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed