Skip to main content
×
×
Home

Spaces of Whitney Functions on Cantor-Type Sets

  • Bora Arslan (a1), Alexander P. Goncharov (a2) and Mefharet Kocatepe (a3)
Abstract

We introduce the concept of logarithmic dimension of a compact set. In terms of this magnitude, the extension property and the diametral dimension of spaces Ɛ(K) can be described for Cantor-type compact sets.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Spaces of Whitney Functions on Cantor-Type Sets
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Spaces of Whitney Functions on Cantor-Type Sets
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Spaces of Whitney Functions on Cantor-Type Sets
      Available formats
      ×
Copyright
References
Hide All
[1] Bessaga, C., Pelczyński, A. and Rolewicz, S., On Diametral approximative dimension and linear homogeneity of F-spaces. Bull. Acad. Pol. Sci. 9 (1961), 677683.
[2] Bierstone, E., Extension of Whitney-Fields from Subanalytic Sets. Invent. Math. 46 (1978), 277300.
[3] Falconer, K., Fractal Geometry, Mathematical Foundations and Applications. John Wiley & Sons, 1990.
[4] Frerick, L., Extension operators for spaces of infinitely differentiable Whitney functions. Habilitation thesis, 2001.
[5] Goncharov, A., A compact set without Markov's property but with an extension operator for C-functions. Studia Math. (1) 119 (1996), 2735.
[6] Goncharov, A., Perfect sets of finite class without the extension property. Studia Math. (2) 126 (1997), 161170.
[7] Goncharov, A. and Kocatepe, M., Isomorphic classification of the spaces of Whitney functions. Michigan Math. J. 44 (1997), 555577.
[8] Goncharov, A. and Kocatepe, M., A continuum of pairwise nonisomorphic spaces of Whitney functions on Cantor-type sets. Linear Topol. Spaces Complex Anal. 3 (1997), 5764.
[9] Kolmogorov, A. N., On the linear dimension of topological vector spaces. Dokl. Akad. Nauk SSSR 120 (1958), 239341 (Russian).
[10] Meise, R. and Vogt, D., Introduction to functional analysis. Clarendon Press, Oxford, 1997.
[11] Mityagin, B. S., Approximate dimension and bases in nuclear spaces. Russian Math. Surveys (4) 16 (1961), 59127 (English translation).
[12] Nevanlinna, R., Analytic Functions. Springer-Verlag, Berlin-New York, 1970.
[13] Pawłucki, W. and Plésniak, W., Extension of C functions from sets with polynomial cusps. Studia Math. 88 (1988), 279287.
[14] Pełczyński, A., On the approximation of S-spaces by finite dimensional spaces. Bull. Acad. Polon. Sci. 5 (1957), 879881.
[15] Pomerenke, Ch., Boundary Behavior of Conformal Maps. Springer-Verlag, Berlin-Heidelberg, 1992.
[16] Stein, E. M., Singular integrals and differentiability properties of functions. Princeton Univ. Press, 1970.
[17] Tidten, M., Fortsetzungen von C-Funktionen, welche auf einer abgeschlossenen Menge in R definiert sind. Manuscripta Math. 27 (1979), 291312.
[18] Tidten, M., Kriterien für die Existenz von Ausdehnungoperatoren zu E(K) für kompakte Teilmengen K von R. Arch.Math. 40 (1983), 7381.
[19] Tidten, M., A geometric characterization for the property (DN) of E(K) for arbitrary compact subsets K of R. Arch.Math. 77 (2001), 247252.
[20] Tikhomirov, V. M., On n-th diameters of compact sets. Dokl. Akad. Nauk SSSR (4) 130(1960), 734737.
[21] Vogt, D., Characterisierung der Unterräume von (s). Math. Z. 155 (1977), 109117.
[22] Vogt, D. and Wagner, M. J., Characterisierung der Quotienträume von s und eine Vermutung von Martineau. Studia Math. 67 (1980), 225240.
[23] Zahariuta, V. P., Some linear topological invariants and isomorphisms of tensor products of scale's centers. Izv. Severo-Kavkaz. Nauchn. Centra Vyssh. Shkoly 4 (1974), 6264 (in Russian).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Journal of Mathematics
  • ISSN: 0008-414X
  • EISSN: 1496-4279
  • URL: /core/journals/canadian-journal-of-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed