Skip to main content Accessibility help
×
Home
Hostname: page-component-7f7b94f6bd-745jg Total loading time: 0.209 Render date: 2022-07-01T02:47:27.915Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

A Subalgebra Intersection Property for Congruence Distributive Varieties

Published online by Cambridge University Press:  20 November 2018

Matthew A. Valeriote*
Affiliation:
Department of Mathematics and Statistics, McMaster University, Hamilton, ON, L8S 4K1, matt@math.mcmaster.ca
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that if a finite algebra $\mathbf{A}$ generates a congruence distributive variety, then the subalgebras of the powers of $\mathbf{A}$ satisfy a certain kind of intersection property that fails for finite idempotent algebras that locally exhibit affine or unary behaviour. We demonstrate a connection between this property and the constraint satisfaction problem.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2009

References

[1] A Baker, K. and Pixley, A. F., Polynomial interpolation and the Chinese remainder theorem for algebraic systems. Math. Z. 143(1975), no. 2, 165174,Google Scholar
[2] Berman, J. D., Kiss, E. W., Pröhle, P., and Szendrei, á., The set of types of a finitely generated variety. Discrete Math. 112(1993)no. 1-3, 120.Google Scholar
[3] Bulatov, A., A graph of a relational structure and constraint satisfaction problems. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004, IEEE, 2004. pp. 448457.Google Scholar
[4] Bulatov, A. and Jeavons, P., Algebraic structures in combinatorial problems. Technical Report MATH-AL-4-2001, Technische Universität Dresden, Germany, 2001.Google Scholar
[5] Bulatov, A., Jeavons, P., and Krokhin, A., Classifying the complexity of constraints using finite algebras. SIAMJ. Comput. 34(2005), no 3, 720742.Google Scholar
[6] Burris, S. and Sankappanavar, H. P.. A course in universal algebra. Graduate Texts in Mathematics 78, Springer-Verlag, New York, 1981.CrossRefGoogle Scholar
[7] Clasen, M. and Valeriote, M., Tame congruence theory. In: Lectures on algebraic model theory, Fields Inst. Monogr. 15, American Mathematical Society, Providence, RI, 2002, pp. 67111.Google Scholar
[8] Feder, T. and Vardi, M. Y., The computational structure of monotone monadic SNP and constraint satisfaction: a study through Datalog and group theory. SIAM J. Comput. 28(1999), no. 1, 57104.Google Scholar
[9] Freese, R. S. and Valeriote, M. A., On the complexity of some Maltsev conditions. Internat. J. Algebra Comput., to appear.Google Scholar
[10] Hobby, D. and Mc Kenzie, R. , The structure of finite algebras, Contemporary Mathematics 76, American Mathematical Society, Providence, RI, 1988.CrossRefGoogle Scholar
[11] Jeavons, P., On the algebraic structure of combinatorial problems. Theoret. Comput. Sci. 200(1998), no. 1-2, 185204.Google Scholar
[12] Jeavons, P., Cohen, D., and Cooper, M. C., Constraints, consistency and closure. Artificial Intelligence 101(1998), no. 1-2, 251265.Google Scholar
[13] Kiss, E. W. and Pröhle, P., Problems and results in tame congruence theory. A survey of the ‘88 Budapest Workshop. Algebra Universalis 29(1992), no. 2, 151171.Google Scholar
[14] Kiss, E. W. and Valeriote, M. A.. On tractability and congruence distributivity. In: Proceedings of the 21st Annual IEEE Symposium on Logic in Computer Science, 2006, IEEE, 2006, pp. 221230.Google Scholar
[15] Larose, B. and Zádori, L., Bounded width problems and algebras. Algebra Universalis 56(2007), no. 3-4, 439466.Google Scholar
[16] Mc Kenzie, R., Mc Nulty, G., and Taylor, W., Algebras, Lattices, Varieties Volume 1. Wadsworth and Brooks/Cole, Monterey, CA, 1987.Google Scholar
[17] Szendrei, á., A survey on strictly simple algebras and minimal varieties. In: Universal algebra and quasigroup theory (Jadwisin, 1989), Res. Exp. Math. 19, Heldermann, Berlin, 1992, pp. 209239.Google Scholar
[18] Valeriote, M. A., Finite simple abelian algebras are strictly simple. Proc. Amer. Math. Soc. 108(1990), no. 1, 4957.Google Scholar
You have Access
10
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A Subalgebra Intersection Property for Congruence Distributive Varieties
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

A Subalgebra Intersection Property for Congruence Distributive Varieties
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

A Subalgebra Intersection Property for Congruence Distributive Varieties
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *