Skip to main content Accesibility Help
×
×
Home

Tannakian Categories With Semigroup Actions

  • Alexey Ovchinnikov (a1) and Michael Wibmer (a2)
Abstract

A theorem of Ostrowski implies that log(x), log(x +1), … are algebraically independent over ℂ(x). More generally, for a linear differential or difference equation, it is an important problem to find all algebraic dependencies among a non-zero solution y and particular transformations of y, such as derivatives of y with respect to parameters, shifts of the arguments, rescaling, etc. In this paper, we develop a theory of Tannakian categories with semigroup actions, which will be used to attack such questions in full generality, as each linear differential equation gives rise to a Tannakian category. Deligne studied actions of braid groups on categories and obtained a ûnite collection of axioms that characterizes such actions to apply them to various geometric constructions. In this paper, we find a finite set of axioms that characterizes actions of semigroups that are ûnite free products of semigroups of the form on Tannakian categories. This is the class of semigroups that appear in many applications.

Copyright
References
Hide All
[1] Baumslag, G. and Solitar, D., Some two-generator one relator non-Hopfian groups. Bull. Amer. Math. Soc. 68(1962), 199201.http://dx.doi.org/10.1090/S0002-9904-1962-10745-9
[2] Cohn, R. M., Difference algebra. Interscience Publishers, New York, 1965.
[3] Deligne, P., Catégories tannakiennes. In: The Grothendieck Festschrift. II. Progr. Math. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 111195.http://dx.doi.Org/10.1007/978-0-81 76-4575-5_3
[4] Deligne, P., Action du groupe des tresses sur une catégorie. Invent. Math. 128(1997), 159175. http://dx.doi.org/10.1007/s002220050138
[5] Deligne, P. and Milne, J., Tannakian categories. In: Hodge cycles, motives, and Shimura varieties. Lecture Notes in Mathematics, 900. Springer-Verlag, Berlin, 1982, pp. 101228. http://www.jmilne.org/math/xnotes/tc.pdf.
[6] Di Vizio, L, Hardouin, C. , and Wibmer, M., Difference Galois theory of linear differential equations. Adv. Math. 260(2014), 158.http://dx.doi.org/10.1016/j.aim.2o14.04.005
[7] Di Vizio, L , Difference algebraic relations among solutions of linear differential equations. J. Inst. Math. Jussieu 2016.http://dx.doi.Org/10.101 7/S147474801 5000080
[8] Drinfeld, V., Gelaki, S., Nikshych, D., and Ostrik, V., On braided fusion categories. I. Selecta Math. (N.S.) 16(2010), no. 1,1119.http://dx.doi.org/10.1007/s00029-010-001 7-z
[9] Frenkel, E., Langlands correspondence for loop groups. Cambridge Studies in Advanced Mathematics, 103. Cambridge University Press, Cambridge, 2007.http://math.berkeley.edu/-frenkel/loop.pdf.
[10] Gillet, H., Gorchinskiy, S., andOvchinnikov, A., Parameterized Picard-Vessiot extensions and Atiyah extensions. Adv. Math. 238(2013), 322411.http://dx.doi.Org/10.1016/j.aim.2013.02.006
[11] Kamensky, M., Tannakian formalism over fields with operators. Internat. Math. Res. Notices 24(2013), 55715622.http://dx.doi.Org/10.1093/imrn/rns190
[12] Kamensky, M., Model theory and the Tannakian formalism. Trans. Amer. Math. Soc. 367(2015)10951120. http://dx.doi.org/10.1090/S0002-9947-2014-06062-5
[13] Koornwinder, T. H., Group theoretic interpretations of Askey's scheme of hypergeometric orthogonal polynomials. In: Orthogonal polynomials and their applications. Lecture Notes in Mathematics, 1329. Springer, 1988, pp. 4672.http://dx.doi.Org/10.1 OO7/BFbOO83353
[14] Levin, A., Difference algebra. Algebra and Applications, 8. Springer, New York, 2008.http://dx.doi.org/10.1007/978-1-4020-6947-5
[15] Mac Lane, S., Categories for the working mathematician. Springer, New York, 1978.http://dx.doi.org/10.1007/978-1-4757-4721-8
[16] Minchenko, A. and Ovchinnikov, A., Zariski closures of reductive linear differential algebraic groups. Adv. Math. 227(2011), no. 3, 11951224.http://dx.doi.Org/10.1016/j.aim.2O11.03.002
[17] Minchenko, A., Ovchinnikov, A., and Singer, M. F., Unipotent differential algebraic groups as parameterized differential Galois groups. J. Inst. Math. Jussieu 13(2014), no. 4, 671700.http://dx.doi.Org/10.1017/S1474748013000200
[18] Ostrowski, A., Sur les relations algébriques entre les intégrales indéfinies. Acta Math. 78(1946), no. 1,315318.http://dx.doi.org/10.1007/BF02421605
[19] Ovchinnikov, A., Tannakian approach to linear differential algebraic groups. Transform. Groups 13(2008), no. 2, 413446.http://dx.doi.org/10.1007/s00031-008-9010-4
[20] Ovchinnikov, A., Tannakian categories, linear differential algebraic groups, and parametrized linear differential equations. Transform. Groups 14(2009), no. 1,195223.http://dx.doi.org/10.1007/s00031-008-9042-9
[21] Ovchinnikov, A., Differential Tannakian categories. J. Algebra 321(2009), no. 10, 30433062. http://dx.doi.Org/10.1016/j.jalgebra.2OO9.O2.008
[22] Ovchinnikov, A., Difference integrability conditions for parameterized linear difference and differential equations. Adv. Appl. Math. 53(2014), 6171.http://dx.doi.Org/10.1016/j.aam.2013.09.007
[23] Ovchinnikov, A. and Wibmer, M., a-Galois theory of linear difference equations. Internat. Math. Res. Notices 2015 (12): 39624018, 2015.http://dx.doi.Org/10.1093/imrn/rnu060
[24] Saavedra Rivano, N., Catégories Tannakiennes. Lecture Notes in Mathematics, 265. Springer-Verlag, Berlin, 1972. http://dx.doi.Org/10.1OO7/BFbOO59108
[25] van der Put, M. and Singer, M. F., Galois theory of linear differential equations. Fundamental Principles of Mathematical Sciences, 328. Springer-Verlag, Berlin, 2003.http://dx.doi.org/10.1007/978-3-642-55750-7
[26] Vilenkin, N. J.and Klimyk, A. U., Representation of Lie groups and special functions. Simplest Lie Groups, Special Functions and Integral Transforms, vol. 1. Springer, Netherlands, 1991.http://dx.doi.org/10.1007/978-94-011-3538-2
[27] Waterhouse, W. C., Introduction to affine group schemes. Graduate Texts in Mathematics, 66. Springer-Verlag, New York, 1979.http://dx.doi.org/10.1007/978-1-4612-6217-6
[28] Wibmer, M., Existence of d-parameterized Picard-Vessiot extensions over fields with algebraically closed constants. J. Algebra 361(2012), 163171.http://dx.doi.Org/10.1016/j.jalgebra.2012.03.035
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Journal of Mathematics
  • ISSN: 0008-414X
  • EISSN: 1496-4279
  • URL: /core/journals/canadian-journal-of-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed