Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-29T02:39:35.893Z Has data issue: false hasContentIssue false

Inspiratory Muscle Training and the Perception of Dyspnea in Parkinson's Disease

Published online by Cambridge University Press:  02 December 2014

Rivka Inzelberg
Affiliation:
Department of Neurology, Hillel Yaffe Medical Center, Hadera, and Rappaport Faculty of Medicine, Technion, Haifa, Israel
Nana Peleg
Affiliation:
Department of Medicine A, Hillel Yaffe Medical Center, Hadera, Israel
Puiu Nisipeanu
Affiliation:
Department of Neurology, Hillel Yaffe Medical Center, Hadera, Israel
Rasmi Magadle
Affiliation:
Department of Medicine A, Hillel Yaffe Medical Center, Hadera, Israel
Ralph L. Carasso
Affiliation:
Department of Neurology, Hillel Yaffe Medical Center, Hadera, and Rappaport Faculty of Medicine, Technion, Haifa, Israel
Paltiel Weiner
Affiliation:
Department of Medicine A, Hillel Yaffe Medical Center, Hadera, and Rappaport Faculty of Medicine, Technion, Haifa, Israel
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Pulmonary and respiratory muscle function impairment are common in patients with Parkinson's disease (PD). Inspiratory muscle training may improve strength, dyspnea and functional capacity in healthy subjects and in those with chronic obstructive pulmonary disease. This study investigated the effect of specific inspiratory muscle training (SIMT) on pulmonary functions, inspiratory muscle performance, dyspnea and quality of life, in patients with PD.

Patients and Methods:

Twenty patients with PD (stage II and III Hoehn and Yahr scale) were recruited for the study and were divided into two groups: a) ten patients who received SIMT and b) ten patients who received sham training, for three months. Pulmonary functions, the respiratory muscle strength and endurance, the perception of dyspnea (POD) and the quality of life were studied before and within one week after the training period. All subjects trained daily, six times a week, each session consisting of 1/2 hour, for 12 weeks.

Results:

Following the training period, there was a significant improvement, in the training group but not in the control group, in the following parameters: inspiratory muscle strength, (PImax, increased from 62.0±8.2 to 78.0±7.5 cm of H2O (p<0.05), inspiratory muscle endurance (increased from 20.0±2.8 to 29.0±3.0 cm of H2O (p<0.05), and the POD (decreased from 17.9±3.2 to 14.0±2.4 units (p<0.05). There was a close correlation between the increase in the inspiratory muscle performance and the decrease in the POD.

Conclusions:

The inspiratory muscle performance may be improved by SIMT in patients with PD. This improvement is associated with a significant decrease in their POD.

Résumé:

RÉSUMÉ:Introduction:

L’atteinte de la fonction pulmonaire et des muscles respiratoires est fréquente chez les patients atteints de la maladie de Parkinson (MP). L’entraînement des muscles inspiratoires peut améliorer la force musculaire, la dyspnée et la capacité fonctionnelle chez des sujets sains et chez des patients atteints de maladie pulmonaire obstructive chronique. L’objectif de cette étude était d’étudier l’effet d’un entraînement spécifique des muscles inspiratoires (ESMI) sur la fonction pulmonaire, la performance des muscles inspiratoires, la dyspnée et la qualité de vie (QDV), chez des patients atteints de MP

Patients et méthodes:

Vingt patients atteints de MP (stade II et III à l’échelle de Hoehn et Yahr) ont été recrutés et divisés en deux groupes, soit dix patients qui ont reçu l’ESMI et dix patients qui ont reçu un entraînement factice pendant trois mois. Les fonctions pulmonaires, la force des muscles respiratoires et l’endurance, la perception de la dyspnée (PDD) et la QDV ont été évaluées avant et au cours de la semaine qui a suivi la période d’entraînement. Tous les sujets s’entraînaient 1/2 heure à tous les jours, six jours par semaine, pendant 12 semaines.

Résultats:

Après la période d’entraînement, on a observé une amélioration significative des paramètres suivants chez le groupe avec ESMI et non chez le groupe témoin : la force des muscles inspiratoires [IP max. augmentée de 62,0 ± 8,2 à 78,0 ± 7,5 cm de H2O (p<0,05)], l’endurance des muscles inspiratoires [augmentée de 20,0 ± 2,8 à 29,0 ± 3,0 cm de H2O (p<0,05)] et la PDD [diminuée de 17,9 ± 3,2 à 14,0 ± 2,4 unités (p<0,05)]. Il existait une étroite corrélation entre l’augmentation de la performance des muscles inspiratoires et la diminution de la PDD.

Conclusions:

L’ESMI peut améliorer la performance des muscles inspiratoires chez les patients atteints de MP. Cette amélioration est associée à une diminution significative de leur PDD.

Type
Original Articles
Copyright
Copyright © The Canadian Journal of Neurological 2005

References

1. Marsden, CD. Parkinson’s disease. J Neurol Neurosurg Psychiatry 1994; 57:672681.CrossRefGoogle ScholarPubMed
2. Obenour, WH, Stevens, PM, Cohen, AA, et al. The causes ofabnormal pulmonary function in Parkinson’s disease. Am Rev Respir Dis 1972; 105:382387.Google Scholar
3. Lilker, ES, Woolf, CR. Pulmonary function in Parkinson’s syndrome:the effect of thalamotomy. Can Med Assoc J 1968; 99:752757.Google ScholarPubMed
4. Vincken, WG, Gauthier, SG, Dollfuss, RE, et al. Involvement ofupper-airway muscles in extrapyramidal disorders: a cause of airflow limitation. N Engl J Med 1984; 311:438442.CrossRefGoogle ScholarPubMed
5. Sabate, M, Rodriguez, M, Mendez, E, et al. Obstructive and restrictivepulmonary dysfunction increases disability in Parkinson’sdisease. Arch Phys Med Rehabil 1996; 77:2934.Google Scholar
6. Tzelepis, GE, McCool, FD, Fridman, JH, et al. Respiratory muscledys function in Parkinson’s disease. Am Rev Respir Dis 1988; 138:266271.Google Scholar
7. Estenne, M, Hubert, M, DeTroyer, A. Respiratory muscleinvolvement in Parkinson’s disease. N Engl J Med 1984; 311:1516.Google Scholar
8. De Bruin, FFC, De Bruin, VMS, Lees, AJ, et al. Effects of treatmenton airway dynamics and respiratory muscle strength in Parkinson’s disease. Am Rev Respir Dis 1993; 148:15761580.CrossRefGoogle Scholar
9. Neu, HC, Connolly, JJ, Schwertley, FW, et al. Obstructive respiratorydysfunction in parkinsonian patients. Am Rev Respir Dis 1967; 95:3347.Google Scholar
10. Ebmeier, KP, Calder, SA, Crawford, JR, et al. Mortality and causes ofdeath in idiopathic Parkinson’s disease: results from the Aberdeen whole population study. Scott Med J 1990; 35:173175.CrossRefGoogle Scholar
11. Saltin, B, Landin, S. Work capacity, muscle strength and SDHactivity in both legs of hemiparetic patients and patients with Parkinson’s disease. Scand J Clin Lab Invest 1975; 35:531538.Google Scholar
12. Carter, JH, Nutt, JG, Woodward, WR. The effect of exercise on levodopa absorption. Neurology 1992; 42:20422045.Google Scholar
13. Weiner, P, Inzelberg, R, Davidovich, A, et al. Respiratory muscleperformance and the perception of dyspnea in Parkinson’sdisease. Can J Neurol Sci 2002; 29:6872.Google Scholar
14. Killian, KG, Campbell, EJM. Dyspnea and exercise. Ann Rev Physiol 1983; 445:465479.CrossRefGoogle Scholar
15. Killian, KG, Jones, NL. The use of exercise testing and othermethods in the investigation of dyspnea. Clin Chest Med 1984; 5:99108.CrossRefGoogle Scholar
16. Killian, KG, Gandevia, SC, Summers, E. Effect of increased lungvolume on perception of breathlessness, effort, and tension. J Appl Physiol 1984; 57:686691.Google Scholar
17. American Thoracic Society. Dyspnea. Mechanism, Assessment, and Management: A consensus statement. Am J Respir Crit Care Med 1999; 159:321349.Google Scholar
18. Schwartzstein, RM, Simon, PM, Weiss, JW, et al. Breathlessness induced by dissociation between ventilation and chemical drive. Am Rev Respir Dis 1989; 139:12311237.Google Scholar
19. Schwartzstein, RM, Manning, HL, Weiss, JW, et al. Dyspnea: asensory experience. Lung 1990; 168:185199.CrossRefGoogle Scholar
20. Flash, T, Inzelberg, R, Schechtman, E, et al. Kinematic properties ofupper limb trajectories in Parkinson’s disease. Exp Neurol 1992; 118:215226.CrossRefGoogle Scholar
21. Hoehn, MM, Yahr, MD. Parkinsonism: onset, progression and mortality. Neurology 1967; 17:427442.CrossRefGoogle ScholarPubMed
22. Black, LF, Hyatt, RE. Maximal respiratory pressures: Normal valuesand relationship to age and sex. Am Rev Respir Dis 1969; 99:696702.Google Scholar
23. Nickerson, BG, Keens, TG. Measuring ventilatory muscle endurancein humans as sustainable inspiratory pressure. J Appl Physiol 1982; 52:768772.Google Scholar
24. Martyn, JB, Moreno, RH, Pare, PD, et al. Measurement of inspiratory muscle performance with incremental threshold loading. Am Rev Respir Dis 1987; 135:919923.CrossRefGoogle ScholarPubMed
25. Kikuchi, Y, Okabe, S, Tamura, G, et al. Chemosensitivity andperception of dyspnea in patients with a history of near-fatal asthma. N Engl J Med 1994;330:13291334.Google Scholar
26. el-Manshawi, A, Killian, KJ, Summers, E, et al. Breathlessness duringexercise with and without resistive load. J Appl Physiol 1986; 61:896905.Google Scholar
27. Ware, JE Jr, Sherbourne, CD. The MOS36-item short formhealthysurvey (SF-36):1Conceptual framework and item selection. Med Care 1992; 30:473483 Google Scholar
28. Paulson, GD, Tarfrate, RH. Some “minor” aspects of parkinsonism, especially pulmonary function. Neurology 1970; 20(2):1419.Google Scholar
29. Lyall, RA, Reuter, I, Mills, J, et al. Effects of acute subcutaneous apomorphine on respiratory muscle strength in Parkinson’s disease. Move Disord 1998; 13(suppl 2):148.Google Scholar
30. Marin, JM, De Oca, MM, Rassulo, J, et al. Ventilatory drive at restand perception of exertional dyspnea in severe COPD. Chest 1999; 115:12931300.CrossRefGoogle Scholar
31. Pardy, RL, Leith, DE. Ventilatory muscle training. Res Care 1984; 29:278284.Google Scholar
32. Shaffer, TH, Wolfson, MR, Bhutani, VK. Respiratory musclefunction, assessment, and training. Phys Ther 1981; 61(12):17111723.CrossRefGoogle Scholar
33. Harver, A, Mahler, DA, Daubenspeck, J. Targeted inspiratory muscletraining improves respiratory muscle function and reduces dyspnea in chronic obstructive pulmonary disease. Ann Intern Med 1989; 111:117124.Google Scholar
34. Kim, A, Larsen, J, Covey, M, et al. Inspiratory muscle training inpatients with chronic obstructive pulmonary disease. Nurs Res 1993; 42:356362.Google Scholar
35. Gosselnik, R, Kovacs, L, Ketelear, P, et al. Respiratory muscleweakness and respiratory muscle training in severely disabled multiple sclerosis patients. Arch Phys Med Rehabil 2000; 81:741751.Google Scholar