Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-30T01:17:48.784Z Has data issue: false hasContentIssue false

Migraine Association with Alzheimer’s Disease Risk: Evidence from the UK Biobank Cohort Study and Mendelian Randomization

Published online by Cambridge University Press:  13 March 2024

Chaofan Geng
Affiliation:
Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
Chen Chen*
Affiliation:
Department of Neurology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
*
Corresponding author: C. Chen; Email: chenchensjnk@163.com

Abstract:

Background:

Epidemiological studies on the association between migraine and Alzheimer’s disease (AD) risk have yielded inconsistent conclusions. We aimed to characterize the phenotypic and genetic relationships between migraine and AD.

Methods:

To investigate the association between migraine and the risk of AD by analyzing data from a large sample of 404,318 individuals who were initially free from all-cause dementia or cognitive impairment, utilizing the UK Biobank dataset. We employed Cox regression modeling and propensity score matching techniques to examine the relationship between migraine and subsequent occurrences of AD. Additionally, the study utilized Mendelian randomization (MR) analysis to identify the genetic relationship between migraine and the risk of AD.

Results:

Migraine patients had a significantly increased risk of developing AD, compared to non-migraine patients (adjusted hazard ratio (HR) = 2.34, 95% confidence interval (CI) = 2.01–0.74, P < 0.001). Moreover, the propensity scores matching analyses found that migraine patients had a significantly higher risk of developing AD compared to non-migraine patients (HR = 1.85, 95%CI = 1,68–2.05, P < 0.001). Additionally, the MR suggested that significant causal effects of migraine on AD risks were observed [odds ratio (OR) = 2.315; 95% confidence interval (CI) = 1.029–5.234; P = 0.002]. Moreover, no evidence supported the causal effects of AD on migraine (OR = 1.000; 95%CI = 0.999–1.006; P = 0.971).

Conclusion:

The present study concludes that migraine patients, compared to a matched control group, exhibit an increased risk of developing AD. Moreover, migraine patients exhibit an increased predisposition of genetic susceptibility to AD. These findings hold significant clinical value for early intervention and treatment of migraines to reduce the risk of AD.

Résumé :

RÉSUMÉ :

L’association de la migraine avec le risque de maladie d’Alzheimer : données probantes tirées de l’étude de cohorte de la UK Biobank (la biobanque du Royaume Uni) et analysées par répartition aléatoire mendélienne.

Contexte :

Des études épidémiologiques ont déjà porté sur l’association de la migraine avec le risque de maladie d’Alzheimer (MA), mais il s’en dégage des conclusions divergentes. Aussi l’étude ici décrite avait-elle pour but de caractériser les relations phénotypiques et génétiques entre la migraine et la MA.

Méthode :

Afin d’examiner l’association de la migraine avec le risque de MA, l’équipe de recherche a procédé à une analyse de données provenant de la UK Biobank, fondée sur un imposant échantillon de 404 318 sujets exempts, au départ, de toute cause de démence ou de troubles cognitifs. Les chercheurs ont aussi eu recours à la modélisation de régression de Cox et aux techniques d’appariement des scores de propension pour examiner la relation entre la migraine et la présence ultérieure de la MA. De plus, l’équipe s’est appuyée sur une analyse par répartition aléatoire mendélienne (RAM) afin d’établir une relation génétique entre la migraine et le risque de MA.

Résultats :

Les sujets migraineux avaient un risque significativement accru de MA, comparativement aux sujets non migraineux (rapport de risques instantanés [RRI] rajusté = 2,34; intervalle de confiance [IC] à 95 % = 2,01-0,74; p < 0,001). En outre, d’après les analyses d’appariement des scores de propension, les participants ayant des migraines connaissaient un risque significativement plus grand de MA que les sujets qui en étaient exempts (RRI = 1,85; IC à 95 % = 1,68-2,05; p < 0,001). De plus, un effet causal important de la migraine sur le risque de MA se serait dégagé de l’analyse par RAM (risque relatif approché [RRA] = 2,315; IC à 95 % = 1,029-5,234; p = 0,002). Par contre, rien ne permet d’établir de lien causal entre la MA et la migraine (RRA = 1,000; IC à 95 % = 0,999-1,006; p = 0,971).

Conclusion :

D’après les résultats de l’étude, les sujets qui souffrent de migraine connaissent un risque plus grand de MA que les témoins appariés qui en sont exempts. De plus, la migraine comporte une prédisposition accrue de susceptibilité génétique à la MA. Aussi faudrait-il accorder une grande valeur clinique aux interventions et aux traitements précoces de la migraine afin de réduire le risque de MA.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Canadian Neurological Sciences Federation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jia, L, Quan, M, Fu, Y, et al. Dementia in China: epidemiology, clinical management, and research advances. Lancet Neurol. 2020;19:8192.CrossRefGoogle Scholar
Wang, ZT, Fu, Y, Zhang, YR, et al. Modified dementia risk score as a tool for the prediction of dementia: a prospective cohort study of 239745 participants. Transl Psychiatry. 2022;12:509.CrossRefGoogle ScholarPubMed
Livingston, G, Sommerlad, A, Orgeta, V, et al. Dementia prevention, intervention, and care. Lancet. 2017;390:2673–734.CrossRefGoogle ScholarPubMed
Frankish, H, Horton, R. Prevention and management of dementia: a priority for public health. Lancet. 2017;390:2614–5.CrossRefGoogle ScholarPubMed
Zhang, Y, Chen, SD, Deng, YT, et al. Identifying modifiable factors and their joint effect on dementia risk in the UK biobank. Nat Hum Behav. 2023;7:1185–95.CrossRefGoogle ScholarPubMed
Fang, T, Zhang, Z, Zhou, H, Wu, W, Ji, F, Zou, L. Effect of genetic liability to migraine and its subtypes on breast cancer: a mendelian randomization study. BMC Cancer. 2023;23:887.CrossRefGoogle ScholarPubMed
Lv, X, Xu, B, Tang, X, et al. The relationship between major depression and migraine: a bidirectional two-sample mendelian randomization study. Front Neurol. 2023;14:1143060.CrossRefGoogle Scholar
Yeh, WZ, Blizzard, L, Taylor, BV. What is the actual prevalence of migraine? Brain Behav. 2018;8:e00950.CrossRefGoogle ScholarPubMed
Gazerani, P. Migraine and diet. Nutrients. 2020;12:1658.CrossRefGoogle ScholarPubMed
Hagen, K, Stordal, E, Linde, M, Steiner, TJ, Zwart, JA, Stovner, LJ. Headache as a risk factor for dementia: a prospective population-based study. Cephalalgia. 2014;34:327–35.CrossRefGoogle ScholarPubMed
Qu, H, Yang, S, Yao, Z, Sun, X, Chen, H. Association of headache disorders and the risk of dementia: meta-analysis of cohort studies. Front Aging Neurosci. 2022;14:804341.CrossRefGoogle ScholarPubMed
Morton, RE, St John, PD, Tyas, SL. Migraine and the risk of all-cause dementia, alzheimer’s disease, and vascular dementia: a prospective cohort study in community-dwelling older adults. Int J Geriatr Psychiatry. 2019;34:1667–76.CrossRefGoogle ScholarPubMed
Hurh, K, Jeong, SH, Kim, SH, Jang, SY, Park, EC, Jang, SI. Increased risk of all-cause, Alzheimer’s, and vascular dementia in adults with migraine in Korea: a population-based cohort study. J Headache Pain. 2022;23:108.CrossRefGoogle ScholarPubMed
Daghlas, I, Rist, PM, Chasman, DI. Effect of genetic liability to migraine on cognition and brain volume: a mendelian randomization study. Cephalalgia. 2020;40:9981002.CrossRefGoogle ScholarPubMed
Kim, J, Ha, WS, Park, SH, Han, K, Baek, MS. Association between migraine and Alzheimer’s disease: a nationwide cohort study. Front Aging Neurosci. 2023;15:1196185.CrossRefGoogle ScholarPubMed
Lee, CS, Gibbons, LE, Lee, AY, et al. Association between cataract extraction and development of dementia. JAMA Intern Med. 2022;182:134–41.CrossRefGoogle ScholarPubMed
Bowden, J, Davey Smith, G, Haycock, PC, Burgess, S. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40:304–14.CrossRefGoogle ScholarPubMed
Bulik-Sullivan, B, Finucane, HK, Anttila, V, et al. An atlas of genetic correlations across human diseases and traits. Nat Genet. 2015;47:1236–41.CrossRefGoogle ScholarPubMed
Bulik-Sullivan, BK, Loh, PR, Finucane, HK, et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47:291–5.CrossRefGoogle ScholarPubMed
Burgess, S, Butterworth, A, Thompson, SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37:658–65.CrossRefGoogle ScholarPubMed
Fry, A, Littlejohns, TJ, Sudlow, C, et al. Comparison of sociodemographic and health-related characteristics of UK biobank participants with those of the general population. Am J Epidemiol. 2017;186:1026–34.CrossRefGoogle ScholarPubMed
Sudlow, C, Gallacher, J, Allen, N, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12:e1001779.CrossRefGoogle ScholarPubMed
Madjedi, KM, Stuart, KV, Chua, SYL, et al. The association of physical activity with glaucoma and related traits in the UK biobank. Ophthalmology. 2023;130:1024–36.CrossRefGoogle ScholarPubMed
Lourida, I, Hannon, E, Littlejohns, TJ, et al. Association of lifestyle and genetic risk with incidence of dementia. JAMA. 2019;322:430–7.CrossRefGoogle ScholarPubMed
Wilkinson, T, Schnier, C, Bush, K, et al. Identifying dementia outcomes in UK biobank: a validation study of primary care, hospital admissions and mortality data. Eur J Epidemiol. 2019;34:557–65.CrossRefGoogle ScholarPubMed
Hautakangas, H, Winsvold, BS, Ruotsalainen, SE, et al. Genome-wide analysis of 102,084 migraine cases identifies 123 risk loci and subtype-specific risk alleles. Nat Genet. 2022;54:152–60.CrossRefGoogle ScholarPubMed
Bellenguez, C, Kucukali, F, Jansen, IE, et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat Genet. 2022;54:412–36.CrossRefGoogle ScholarPubMed
Hemani, G, Zheng, J, Elsworth, B, et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife. 2018;7:7.CrossRefGoogle ScholarPubMed
Verbanck, M, Chen, CY, Neale, B, Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from mendelian randomization between complex traits and diseases. Nat Genet. 2018;50:693–8.CrossRefGoogle ScholarPubMed
George, KM, Folsom, AR, Sharrett, AR, et al. Migraine headache and risk of dementia in the atherosclerosis risk in communities neurocognitive study. Headache. 2020;60:946–53.CrossRefGoogle ScholarPubMed
Wang, J, Xu, W, Sun, S, Yu, S, Fan, L. Headache disorder and the risk of dementia: a systematic review and meta-analysis of cohort studies. J Headache Pain. 2018;19:95.CrossRefGoogle ScholarPubMed
Breteler, MM, van Duijn, CM, Chandra, V, et al. Medical history and the risk of Alzheimer’s disease: a collaborative re-analysis of case-control studies. EURODEM risk factors research group. Int J Epidemiol. 1991;20:S36–42.CrossRefGoogle ScholarPubMed
Cermelli, A, Roveta, F, Giorgis, L, et al. Is headache a risk factor for dementia? A systematic review and meta-analysis. Neurol Sci. 2023;45:10171030.CrossRefGoogle ScholarPubMed
Lee, SY, Lim, JS, Oh, DJ, Kong, IG, Choi, HG. Increased risk of neurodegenerative dementia in women with migraines: a nested case-control study using a national sample cohort. Medicine (Baltimore). 2019;98:e14467.CrossRefGoogle ScholarPubMed
Tzeng, NS, Chung, CH, Lin, FH, et al. Headaches and risk of dementia. Am J Med Sci. 2017;353:197206.CrossRefGoogle ScholarPubMed
Jiang, W, Liang, GH, Li, JA, Yu, P, Dong, M. Migraine and the risk of dementia: a meta-analysis and systematic review. Aging Clin Exp Res. 2022;34:1237–46.CrossRefGoogle ScholarPubMed
Kostev, K, Bohlken, J, Jacob, L. Association between migraine headaches and dementia in more than 7,400 patients followed in general practices in the United Kingdom. J Alzheimers Dis. 2019;71:353–60.CrossRefGoogle ScholarPubMed
Lee, HJ, Yu, H, Gil Myeong, S, Park, K, Kim, DK. Mid- and late-life migraine is associated with an increased risk of all-cause dementia and Alzheimer’s disease, but not vascular dementia: a nationwide retrospective cohort study. J Pers Med. 2021;11:990.CrossRefGoogle Scholar
Wang, L, Wu, JC, Wang, FY, Chen, X, Wang, Y. Meta-analysis of association between migraine and risk of dementia. Acta Neurol Scand. 2022;145:8793.CrossRefGoogle ScholarPubMed
Sanderson, E, Richardson, TG, Morris, TT, Tilling, K, Davey Smith, G. Estimation of causal effects of a time-varying exposure at multiple time points through multivariable mendelian randomization. PLoS Genet. 2022;18:e1010290.CrossRefGoogle ScholarPubMed
Lawlor, DA, Harbord, RM, Sterne, JA, Timpson, N, Davey Smith, G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27:1133–63.CrossRefGoogle ScholarPubMed
Emdin, CA, Khera, AV, Kathiresan, S. Mendelian randomization. JAMA. 2017;318:1925–6.CrossRefGoogle ScholarPubMed
Bowden, J, Holmes, MV. Meta-analysis and mendelian randomization: a review. Res Synth Methods. 2019;10:486–96.CrossRefGoogle ScholarPubMed
Holmes, MV, Ala-Korpela, M, Smith, GD. Mendelian randomization in cardiometabolic disease: challenges in evaluating causality. Nat Rev Cardiol. 2017;14:577–90.CrossRefGoogle ScholarPubMed
Lee, K, Lim, CY. Mendelian randomization analysis in observational epidemiology. J Lipid Atheroscler. 2019;8:6777.CrossRefGoogle ScholarPubMed
Heidari, H, Shojaei, M, Askari, G, et al. The impact of curcumin on migraine: a comprehensive review. Biomed Pharmacother. 2023;164:114910.CrossRefGoogle ScholarPubMed
Ramachandran, R. Neurogenic inflammation and its role in migraine. Semin Immunopathol. 2018;40:301–14.CrossRefGoogle ScholarPubMed
Herman, JP, McKlveen, JM, Ghosal, S, et al. Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr Physiol. 2016;6:603–21.CrossRefGoogle ScholarPubMed
Chi, S, Yu, JT, Tan, MS, Tan, L. Depression in Alzheimer’s disease: epidemiology, mechanisms, and management. J Alzheimers Dis. 2014;42:739–55.CrossRefGoogle ScholarPubMed
Saeedi, M, Rashidy-Pour, A. Association between chronic stress and Alzheimer’s disease: therapeutic effects of saffron. Biomed Pharmacother. 2021;133:110995.CrossRefGoogle ScholarPubMed
Ringman, JM, Romano, JD, Medina, LD, et al. Increased prevalence of significant recurrent headache in preclinical familial Alzheimer’s disease mutation carriers. Dement Geriatr Cogn Disord. 2008;25:380–4.CrossRefGoogle ScholarPubMed
Breslau, N, Rasmussen, BK. The impact of migraine: epidemiology, risk factors, and co-morbidities. Neurology. 2001;56:S4–12.CrossRefGoogle ScholarPubMed
Supplementary material: File

Geng and Chen supplementary material

Geng and Chen supplementary material
Download Geng and Chen supplementary material(File)
File 180.3 KB