Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T18:57:57.026Z Has data issue: false hasContentIssue false

New Developments in the Surgery for Parkinson's Disease

Published online by Cambridge University Press:  02 December 2014

Christopher Honey
Affiliation:
Division of Neurosurgery, Department of Surgery, University of British Columbia
R.E. Gross
Affiliation:
University of Toronto
A.M. Lozano
Affiliation:
University of Toronto
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Despite optimization of medical therapy, a large number of patients with Parkinson's disease continue to be disabled. For this group, alternate treatment strategies such as neurosurgical intervention can be considered. Recent advances in neurosurgical techniques and in understanding the pathophysiology of motor disturbances in PD have made surgery safer and more effective. Functional neurosurgical procedures to lesion or electrically modulate dysfunctional basal ganglia circuits or to protect or restore dopaminergic transmission are being increasingly used. These procedures are having a profound impact on the motor disturbances of PD and are producing important improvements in quality of life of patients.

Résumé

RÉSUMÉ

Malgré des améliora-tions importantes dans le traitement de la maladie de Parkinson (MP), un grand nombre de patients demeurent invalides. Pour ce groupe de patients, d'autres stratégies de traitement comme la neurochirurgie peuvent être con-sidérées. Les progrès techniques récents en neurochirurgie et dans la compréhension de la physiopathologie des troubles moteurs dans la MP ont diminué les risques de la chirurgie et ont augmenté son efficacité. Les interven-tions neurochirurgicales fonctionnelles pour créer une lésion ou moduler électriquement les circuits dysfonction-nels ou pour protéger ou rétablir la transmission dopaminergique sont de plus en plus utilisées. Ces interventions ont un impact important sur les troubles moteurs dans la MP et procurent aux patients des améliorations impor-tantes de leur qualité de vie.

Type
Research Article
Copyright
Copyright © The Canadian Journal of Neurological 1999

References

1. Rajput, AH. Frequency and cause of Parkinson’s disease. Can J Neurol Sci 1992; 19(1 Suppl): 103107.Google Scholar
2. Lilienfeld, DE, Chan, E, Ehland, J, et al. Two decades of increasing mortality from Parkinson’s disease among the U.S. elderly. Arch Neurol 1990; 47(7): 731734.Google Scholar
3. Tasker, RR. Thalamotomy. Neurosurg Clin North Am 1990; 1: 841864.Google Scholar
4. Laitinen, LV, Bergenheim, AT, Hariz, MI. Leksell’s posteroventral pallidotomy in the treatment of Parkinson’s disease. J Neurosurg 1992; 76: 5361.Google Scholar
5. Lozano, AM, Lang, AE, Galvez-Jimenez, N, et al. Effect of GPi pallidotomy on motor function in Parkinson’s disease. Lancet 1995; 346: 13831387.Google Scholar
6. Kishore, A, Turnbull, IM, Snow, BJ, et al. Efficacy, stability and predictors of outcome of pallidotomy for Parkinson’s disease. Six-month follow-up with additional 1-year observations. Brain 1997; 120: 729737.Google Scholar
7. Kopyov, O, Jacques, D, Duma, C, et al. Microelectrode-guided posteroventral medial radiofrequency pallidotomy for Parkinson’s disease. J Neurosurg 1997; 87: 5259.Google Scholar
8. Krauss, JK, Desaloms, JM, Lai, EC, et al. Microelectrode-guided posteroventral pallidotomy for treatment of Parkinson’s disease: postoperative magnetic resonance imaging analysis. J Neurosurg 1997; 87: 358367.Google Scholar
9. Uitti, RJ, Wharen, REJ, Turk, MF, et al. Unilateral pallidotomy for Parkinson’s disease: comparison of outcome in younger versus elderly patients. Neurology 1997; 49: 10721077.Google Scholar
10. Samuel, M, Caputo, E, Brooks, DJ, et al. A study of medical pallidotomy for Parkinson’s disease: clinical outcome, MRI location and complications. Brain 1998; 121: 5975.Google Scholar
11. Baron, MS, Vitek, JL, Bakay, RA, et al. Treatment of advanced Parkinson’s disease by posterior GPi pallidotomy: 1-year results of a pilot study. Ann Neurol 1996; 40: 355366.Google Scholar
12. Lang, AE, Lozano, AM, Montgomery, E, et al. Posteroventral medial pallidotomy in advanced Parkinson’s disease. N Engl J Med 1997; 337: 10361042.CrossRefGoogle ScholarPubMed
13. Fazzini, E, Dogali, M, Sterio, D, Eidelberg, D, Beric, A. Stereotactic pallidotomy for Parkinson’s disease: a long-term follow-up of unilateral pallidotomy. Neurology 1997; 48: 12731277.CrossRefGoogle ScholarPubMed
14. Filion, M, Tremblay, L. Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res 1991; 547: 142151.Google Scholar
15. Miller, WC, Delong, MR. Altered tonic activity of neurons in the globus pallidus and subthalamic nucleus in the primate MPTP model of parkinsonism. In: Carpenter, MB, Jayaraman, A, ed. The Basal Ganglia 2. New York: Plenum Press, 1987: 415427.Google Scholar
16. Delong, MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci 1990; 13: 281285.Google Scholar
17. Albin, RL, Young, AB, Penney, JB. The functional anatomy of basal ganglia disorders. Trends Neurosci 1989; 12: 366375.Google Scholar
18. Grafton, ST, Waters, C, Sutton, J, Lew, MF, Couldwell, W. Pallidotomy increases activity of motor association cortex in Parkinson’s disease: a positron emission tomographic study. Ann Neurol 1995; 37: 776783.Google Scholar
19. Samuel, M, Ceballos-Baumann, AO, Turjanski, N, et al. Pallidotomy in Parkinson’s disease increases supplementary motor area and prefrontal activation during performance of volitional movements an H2(15)O PET study. Brain 1997; 120: 13011313.Google Scholar
20. Davis, KD, Taub, E, Houle, S, Lang, AE, Dostrovsky, JO, Tasker, RR, et al. Globus pallidus stimulation activates the cortical motor system during alleviation of parkinsonian symptoms. Nature Medicine 1997; 3: 671674.CrossRefGoogle ScholarPubMed
21. Svennilson, E, Torvik, A, Lomo, R, Leksell, L. Treatment of Parkinsonism by stereotactic thermolesions in the pallidal region. Acta Psychiat Neurol Scand 1960; 35: 358377.Google Scholar
22. Langston, JW, Widner, H, Goetz, CG, et al. Core assessment program for intracerebral transplantations (CAPIT). Mov Disord 1992; 7: 213.Google Scholar
23. Dogali, M, Fazzini, E, Kolodny, E, et al. Stereotactic ventral pallidotomy for Parkinson’s disease. Neurology 1995; 45: 753761.Google Scholar
24. Biousse, V, Newman, NJ, Carroll, C, et al. Visual fields in patients with posterior GPi pallidotomy. Neurology 1998; 50: 258265.Google Scholar
25. Sutton, JP, Couldwell, W, Lew, MF, et al. Ventroposterior medial pallidotomy in patients with advanced Parkinson’s disease. Neurosurgery 1995; 36: 11121116; discussion 1116–1117.Google Scholar
26. Guiot, G, Hardy, J, Albe-Fessard, D. Délimitation précise des structures souscorticales et identification de noyaux thalamiques chez l’homme par l’électrophysiologie stéréotaxique. Neurochirurgia (Stutt) 1962; 51: 118.Google Scholar
27. Benabid, AL, Pollak, P, Gao, DM, et al. Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg 1996; 84: 203214.Google Scholar
28. Koller, W, Pahwa, R, Busenbark, K, et al. High-frequency unilateral thalamic stimulation in the treatment of essential and parkinsonian tremor. Ann Neurol 1997; 42: 292299.Google Scholar
29. Siegfried, J, Lippitz, B. Bilateral chronic electrostimulation of ventroposterolateral pallidum: a new therapeutic approach for alleviating all parkinsonian symptoms. Neurosurgery 1996; 35: 11261130.CrossRefGoogle Scholar
30. Volkmann, J, Sturm, V, Weiss, P, et al. Bilateral high-frequency stimulation of the internal globus pallidus in advanced Parkinson’s disease. Ann Neurol 1998; 44: 953–61.Google Scholar
31. Gross, C, Rougier, A, Guehl, D, et al. High-frequency stimulation of the globus pallidus internalis in Parkinson’s disease: a study of seven cases. J Neurosurg 1997; 87(4): 491498.Google Scholar
32. Tronnier, VM, Fogel, W, Kronenbuerger, M, Steinvorth, S. Pallidal stimulation: an alternative to pallidotomy? J Neurosurg 1997; 87(5): 700705.Google Scholar
33. Bejjani, B, Damier, P, Arnulf, I, et al. Pallidal stimulation for Parkinson’s disease. Two targets? Neurology 1997; 49(6): 15641569.Google Scholar
34. Krack, P, Pollak, P, Limousin, P, et al. Opposite motor effects of pallidal stimulation in Parkinson’s disease. Ann Neurol 1998; 43(2): 180192.CrossRefGoogle ScholarPubMed
35. Galvez-Jimenex, N, Lozano, A, Tasker, R, et al. Pallidal stimulation in Parkinson’s disease patients with a prior unilateral pallidotomy. Can J Neurol Sci 1998; 25: 300305.Google Scholar
36. Limousin, P, Pollak, P, Benazzouz, A, et al. Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 1995; 345: 9195.Google Scholar
37. Limousin, P, Krack, P, Pollak, P, et al. Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 1998; 339: 11051111.CrossRefGoogle ScholarPubMed
38. Kumar, R, Lozano, AM, Kim, YJ, Het al. Double-blind evaluation of subthalamic nucleus deep brain stimulation in advanced Parkinson’s disease. Neurology 1998; 51: 850855.CrossRefGoogle ScholarPubMed
39. Kish, S.J., Shannak, K, Hornykiewicz, O. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. N Engl J Med 1988; 318: 876880.Google Scholar
40. Olanow, CW, Freeman, TB, Kordower, JH. Neural transplantation as a therapy for Parkinson’s disease. Adv Neurol 1997; 74: 249269.Google Scholar
41. Mehta, V, Spears, J, Mendez, I. Neural transplantation in Parkinson’s Disease. Can J Neurol Sci 1997; 24(4): 292301.Google Scholar
42. Backlund, EO, Granberg, PO, Hamberger, B, et al. Transplantation of adrenal medullary tissue to striatum in parkinsonism. First clinical trials. J. Neurosurg 1985; 62: 169173.Google Scholar
43. Lindvall, O, Backlund, EO, Farde, L, et al. Transplantation in Parkinson’s disease: two cases of adrenal medullary grafts to putamen. Ann Neurol 1987; 22: 457468.Google Scholar
44. Madrazo, I, Drucker-Colin, R, Diaz, V, et al. Open microsurgical autograft of adrenal medulla to the right caudate nucleus in Parkinson’s disease: a report of two cases. N Engl J Med 1987; 316: 831834.Google Scholar
45. Allen, GS, Burns, RS, Tulipan, NB, et al. Adrenal medullary transplantation to the caudate nucleus in Parkinson’s disease. Initial results in 18 patients. Arch Neurol 1989; 46: 487491.Google Scholar
46. Bakay, RAE. Preliminary report on adrenal medullary grafting from the American Association of Neurological Surgeons GRAFT project. Restorative Neurol Neurosci 1989; 1: 158.Google Scholar
47. Kelly, PJ, Ahlskog, JE, Van Heerden, JA, et al. Adrenal medullary autograft transplantation into the striatum of Parkinson’s disease. Mayo Clin Proc 1989; 64: 282290.Google Scholar
48. Jiang, N, Jiang, C, Tang, A, et al. Human foetal brain transplant trials in the treatment of Parkinsonism. Acta Acad Medicin Shangai 1987; 14(1): 77.Google Scholar
49. Madrazo, I, Leon, V, Torres, C, et al. Transplantation of fetal substantia nigra and adrenal medulla to the caudate nucleus in two patients with Parkinson’s disease. N Engl J Med 1988; 318: 51.Google Scholar
50. Lindvall, O, Rehncrona, S, Gustavii, B, et al. Fetal dopamine-rich mesencephalon grafts in Parkinson’s disease. Lancet 1988; 2: 14831484.Google Scholar
51. Lindvall, O, Brundin, P, Widner, H, et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 1990; 247: 547.Google Scholar
52. Spencer, DD, Robins, RJ, Naftolin, F, et al. Unilateral transplantation of human fetal mesencephalic tissue into the caudate nucleus of patients with Parkinson’s disease. N Engl J Med 1992; 327: 15411548.Google Scholar
53. Freed, CR, Breeze, RE, Rosenberg, NL, et al. Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson’s disease. N Engl J Med 1992; 327: 15491555.Google Scholar
54. Widner, H, Tetrud, J, Rehncrona, S, et al. Bilateral fetal mesencephalic grafting in two patients with Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). N Engl J Med 1992; 327: 15561563.Google Scholar
55. Hitchcock, ER, Kenny, BG, Clough, CG, et al. Stereotactic implantation of foetal mesencephalon (STIM): the UK experience. In: Dunnett, SB, Richards, S-J, eds. Neural Transplantation: From Molecular Basis to Clinical Applications. Progress in Brain Research. Amsterdam: Elsevier, 1990: 723728.Google Scholar
56. Molina, H, Quinones, R, Alvarez, L, et al. Transplantation of human fetal mesencephalic tissue in caudate nucleus as treatment for Parkinson’s disease: the Cuban experience. In: Lindvall, O, Bjorklund, A, Widner, H, eds. Intracerebral Transplantation in Movement Disorders. Restorative Neurology, Vol. 4, Amsterdam: Elsevier, 1991: 99110.Google Scholar
57. Peschanski, M, Defer, G, Guyen, JP, et al. Bilateral motor improvement and alteration of L-dopa effect in two patients with Parkinson’s disease following intrastriatal transplantation of foetal ventral mesencephalon. Brain 1994; 117: 487499.Google Scholar
58. Lopez-Lozano, JJ, Bravo, G, Brera, B, et al. Long-term follow-up in 10 Parkinson’s disease patients subjected to fetal brain grafting into a cavity in the caudate nucleus: the clinica Puerta de Hierro experience. Transplant Pro 1995; 27(1): 13951400.Google Scholar
59. Freeman, TB, Olanow, CW, Hauser, RA, et al. Bilateral fetal nigral transplantation into the postcommissural putamen in Parkinson’s disease. Ann Neurol 1995; 38(3) 379388.Google Scholar
60. Freed, CR, Breeze, RE, Leehey, MA, et al. Eight years experience with fetal neurotransplantation in patients with advanced Parkinson’s disease. Soc Neurosci Abst 1996; 22(2): 481.3.Google Scholar
61. Savel’ev, SV. Outlook for the use of nerve tissue xenotransplantation in neurosurgery. Arkhiv Patologii. 1995; 57(2): 1118.Google Scholar
62. Freed, WJ, Morihisa, JM, Spoor, E, et al. Transplanted adrenal chromaffin cells in rat brain reduce lesion induced rotational behaviour. Nature 1981; 292: 351352.Google Scholar
63. Wurtman, RJ, Pohorecky, LA, Baliga, BS. Adrenocortical control of the biosynthesis of epinephrine and proteins in the adrenal medulla. Pharmacol Rev 1972; 24: 411426.Google Scholar
64. Brown, VJ, Dunnett, SB. Comparison of adrenal and foetal nigral grafts on drug-induced rotation in rats with 6-OHDA lesions. Exp Brain Res 1989; 78: 214218.Google Scholar
65. Goetz, CG, Stebbins, GT, Klawans, HL, et al. United Parkinson Foundation Neural Transplantation Registry on adrenal medullary transplants: presurgical, and 1 and 2 year follow-up. Neurology 1991; 41: 17191722.Google Scholar
66. Date, I, Shingo, T, Ohmoto, T, et al. Longterm enhanced chromaffin cell survival and behavioral recovery in hemiparkinsonian rats with cografted polymerencapsulated human NGFsecreting cells. Neurology 1997; 147(1): 1017.Google Scholar
67. Lund, R, Hauscha, S. Transplanted neural tissue develops connections with host rat brain. Science 1976; 193: 582584.Google Scholar
68. Kordower, JH, Freeman, TB, Chen, EY, Mufson, EJ, Sanberg, PR, Hauser, RA, Snow, B and Olanow, CW. Fetal nigral grafts survive and mediate clinical benefit in a patient with Parkinson’s disease. Mov Disord 1998; 13: 383393.Google Scholar
69. Freeman, TB, Sanberg, PR, Navelt, GM, et al. Influence of donor age on the survival of solid and suspension intraparenchymal human embryonic micrografts. Cell Transplant 1995; 4: 141145.Google Scholar
70. Nikkhah, G, Cunningham, MG, Jodicke, A, et al. Improved graft survival and striatal reinnervation by microtransplantation of fetal nigral cell suspensions in the rat Parkinson’s model. Brain Res 1994; 633: 133143.Google Scholar
71. Sloan, DJ, Wood, MJ, Charlton, HM. The immune response to intracerebral neural grafts. Trends Neurosci 1991; 14(8): 341346.Google Scholar
72. Kordower, JH, Freeman, TB, Snow, BJ, et al. Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson’s disease. N Engl J Med 1995; 332: 11181124.Google Scholar
73. Levivier, M, Przedborski, S, Bencsics, C, et al. Intrastriatal implantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson’s disease. J Neurosci 1995; 15(12): 78108720.Google Scholar
74. Tornatore, C, BakerCairns, B, Yadid, G, et al. Expression of tyrosine hydroxylase in an immortalized human fetal astrocyte cell line; in vitro characterization and engraftment into the rodent striatum. Cell Transplant 1996; 5(2): 145163.Google Scholar
75. Maysinger, D, Piccardo, P, Cuello, AC. Microencapsulation and the grafting of genetically transformed cells as therapeutic strategies to rescue degenerating neurons of the CNS. Rev Neurosci 1995; 6(1): 1533.Google Scholar
76. Date, I, Miyoshi, Y, Ono, T, et al. Preliminary report of polymeren-capsulated dopamine-secreting cell grafting into the brain. Cell Transplant 1996; 5; (5 Suppl 1): S1719.Google Scholar
77. Whittemore, SR, Eaton, MJ, Onifer, SM. Gene therapy and the use of stem cells for central nervous system regeneration. Adv Neurol 1997; 72: 113119.Google Scholar
78. Freese, A, Stern, M, Kaplitt, MG, et al. Prospects for gene therapy in Parkinson’s disease. Mov Disord 1996; 11(5): 469488.Google Scholar
79. Freeman, TB. From transplants to gene therapy for Parkinson’s disease. Exp Neurol 1997; 144(1): 4750.Google Scholar
80. Horellou, P, Mallet, J. Gene therapy for Parkinson’s disease. Mol Neurobiol 1997; 15(2): 241256.Google Scholar
81. Galpern, WR, Burns, LH, Deacon, TW, et al. Xenotransplantation of porcine fetal ventral mesencephalon in a rat model of Parkinson’s disease: functional recovery and graft morphology. Exp Neurol 1996; 140(1): 113.Google Scholar
82. Dinsmore, JH, Pakzaban, P, Deacon, TW, et al. Survival of transplanted porcine neural cells treated with F(ab’)2 antibody fragments directed against donor MHC class in a rodent model. Transplantation Proc 1996; 28(2): 817818.Google Scholar
83. Oppenheim, RW. The neurotrophic theory and naturally occuring motorneuron death. Trends Neurosci 1989; 12: 252255.Google Scholar
84. Lin, LH, Doherty, DH, Lile, JD, et al. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 1993; 260: 11301132.Google Scholar
85. Hudson, J, Granholm, AC, Gerhardt, GA, et al. Glial cell line-derived neurotrophic factor augments midbrain dopaminergic circuits in vivo. Brain Res Bulletin 1995; 36(5): 425432.Google Scholar
86. Shults, CW, Kimber, T, Martin, D. Intrastriatal injection of GDNF attenuates the effects of 6-hydroxydopamine. Neuroreport 1996; 7(2): 627631.Google Scholar
87. Gash, DM, Zhang, Z, Ovadia, A, et al. Functional recovery in parkinsonian monkeys treated with GDNF. Nature 1996; 380(6571): 252255.Google Scholar